15 research outputs found

    Preliminary catalog of pictures taken on the lunar surface during the Apollo 15 mission

    Get PDF
    Catalog of all pictures taken from lunar module or lunar surface during Apollo 15 missio

    A miniature sensor for electrical field measurements in dusty planetary atmospheres

    Full text link
    "Dusty phenomena such as regular wind-blown dust, dust storms, and dust devils are the most important, currently active, geological processes on Mars. Electric fields larger than 100 kV/m have been measured in terrestrial dusty phenomena. Theoretical calculations predict that, close to the surface, the bulk electric fields in martian dusty phenomena reach the breakdown value of the isolating properties of thin martian air of about a few 10 kV/m. The fact that martian dusty phenomena are electrically active has important implications for dust lifting and atmospheric chemistry. Electric field sensors are usually grounded and distort the electric fields in their vicinity. Grounded sensors also produce large errors when subject to ion currents or impacts from clouds of charged particles. Moreover, they are incapable of providing information about the direction of the electric field, an important quantity. Finally, typical sensors with more than 10 cm of diameter are not capable of measuring electric fields at distances as small as a few cm from the surface. Measurements this close to the surface are necessary for studies of the effects of electric fields on dust lifting. To overcome these shortcomings, we developed the miniature electric-field sensor described in this article."http://deepblue.lib.umich.edu/bitstream/2027.42/64202/1/jpconf8_142_012075.pd

    Neutral Solar Wind Generated by Lunar Exospheric Dust at the Terminator

    Full text link
    We calculate the flux of neutral solar wind observed on the lunar surface at the terminator due to solar wind protons penetrating exospheric dust grains with (1) radii greater than 0.1 microns and (2) radii greater than 0.01 microns. For grains with radii larger than 0.1 microns, the ratio of the neutral solar wind flux produced by exospheric dust to the incident ionized solar wind flux is estimated to be about 10^-4-10^-3 for solar wind speeds in excess of 800 km/s, but much lower (less than 10^-5) at average to slow solar wind speeds. However, when the smaller grain sizes are considered, this ratio is estimated to be greater than 10^-5 at all speeds, and at speeds in excess of 700 km/s reaches about 10^-3. These neutral solar wind fluxes are easily measurable with current low energy neutral atom instrumentation. Observations of neutral solar wind from the surface of the Moon would provide independent information on the distribution of very small dust grains in the lunar exosphere that would complement and constrain optical measurements at ultraviolet and visible wavelengths.Comment: in press in J. Geophys. Re

    Service Life of Durable Pavement Markings

    No full text

    Apollo 16 Exploration of Descartes: A Geologic Summary

    No full text
    The Cayley Plains at the Apollo 16 landing site consist of crudely stratified breccias to a depth of at least 200 meters, overlain by a regolith 10 to 15 meters thick. Samples, photographs, and observations by the astronauts indicate that most of the rocks are impact breccias derived from an anorthosite-gabbro complex. The least brecciated members of the suite include coarse-grained anorthosite and finer-grained, more mafic rocks, some with igneous and some with metamorphic textures. Much of the traverse area is covered by ejecta from North Ray and South Ray craters, but the abundance of rock fragments increases to the south toward the younger South Ray crater. The Descartes highlands, a distinct morphologic entity, differ from the adjacent Cayley formation more in physiographic expression than in lithologic character

    Geologic Exploration of Taurus-Littrow: Apollo 17 Landing Site

    No full text
    Apollo 17 landed in a deep graben valley embaying the mountainous highlands southeast of the Serenitatis basin. Impact-generated breccias underlie the massifs adjacent to the valley, and basalt has flooded and leveled the valley floor. The dark mantle inferred from orbital photographs was not recognized as a discrete unit; the unusually thick regolith of the valley floor contains a unique high concentration of dark glass beads that may cause the low albedo of much of the surface

    Dust Pond

    No full text
    corecore