1,090 research outputs found

    Biomarker and Geochemical Assay Validation in Mars Analog Sites: Lessons from the FELDSPAR (Field Exploration and Life Detection Sampling for Planetary Analog Research) Project

    Get PDF
    Missions looking for signs of life on other worlds can often only take a few samples once they arrive. Making sense of these "few and far between" observations is easier if we know what a "normal" level of variation for that kind of planet is. Recent eruption sites in Iceland are good places to learn about this, because they have very little life present and the same types of rocks as many places on Mars. We have visited several of these sites in Iceland and tested many different kinds of measurements: the energy available for life, the amount of DNA (an important biological molecule) present, the relative amounts of different kinds of micro-organisms, and the specific minerals that make up the rocks and ground. In addition to recommendations for future expeditions, we have also shown that using early on-site measurements to choose later on-site sample sites is very helpful in reducing the number of sample sites needed

    Catabolic enzyme activities in relation to premigratory fattening and muscle hypertrophy in the gray catbird ( Dumetella carolinensis )

    Full text link
    The flight muscles of the gray catbird ( Dumetella carolinensis ) were examined to determine if short term adjustments occur in the activity of key catabolic enzymes during preparation for long distance migration. The aerobic capacity of the pectoralis muscle as indicated by citrate synthase activity (CS) is among the highest reported for skeletal muscle (200 ÎŒmoles [min·g fresh mass] −1 at 25°C). The mass specific aerobic capacity as indicated by CS activity or cytochrome c concentration does not change during premigratory fattening (Fig. 2) or in relation to the muscle hypertrophy that occurs concomitantly. The maintenance of mass specific aerobic capacity indicates that the total aerobic capacity increases in proportion to the increase in muscle size. The augmented potential for total aerobic power output is considered an adaptation to meet the increased power requirements of flight due to the increased body mass. Additionally, the capacity to oxidize fatty acids, as indicated by ÎČ-hydroxyacyl-CoA dehydrogenase activity, approximately doubles during premigratory fattening (from 35 to 70 ÎŒmoles [min·g fresh mass] −1 at 25°C; Fig. 1A). This adaptation should favor fatty acid oxidation, thereby sparing carbohydrate and prolonging endurance. The activity of phosphofructokinase, a key glycolytic enzyme, does not change before migration.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47125/1/360_2004_Article_BF01101461.pd

    Nicotinic Receptors Underlying Nicotine Dependence: Evidence from Transgenic Mouse Models.

    Get PDF
    Nicotine underlies the reinforcing properties of tobacco cigarettes and e-cigarettes. After inhalation and absorption, nicotine binds to various nicotinic acetylcholine receptor (nAChR) subtypes localized on the pre- and postsynaptic membranes of cells, which subsequently leads to the modulation of cellular function and neurotransmitter signaling. In this chapter, we begin by briefly reviewing the current understanding of nicotine's actions on nAChRs and highlight considerations regarding nAChR subtype localization and pharmacodynamics. Thereafter, we discuss the seminal discoveries derived from genetically modified mouse models, which have greatly contributed to our understanding of nicotine's effects on the reward-related mesolimbic pathway and the aversion-related habenulo-interpeduncular pathway. Thereafter, emerging areas of research focusing on modulation of nAChR expression and/or function are considered. Taken together, these discoveries have provided a foundational understanding of various genetic, neurobiological, and behavioral factors underlying the motivation to use nicotine and related dependence processes, which are thereby advancing drug discovery efforts to promote long-term abstinence

    Search for resonant WZ production in the fully leptonic final state in proton–proton collisions at √s=13 TeV with the ATLAS detector

    Get PDF

    Measurement of the nuclear modification factor of b-jets in 5.02 TeV Pb+Pb collisions with the ATLAS detector

    Get PDF

    Measurement of exclusive pion pair production in proton–proton collisions at √s=7 TeV with the ATLAS detector

    Get PDF

    Measurement of the energy asymmetry in ttÂŻ j production at 13 TeV with the ATLAS experiment and interpretation in the SMEFT framework

    Get PDF
    A measurement of the energy asymmetry in jet-associated top-quark pair production is presented using 139fb-1 of data collected by the ATLAS detector at the Large Hadron Collider during pp collisions at s=13TeV. The observable measures the different probability of top and antitop quarks to have the higher energy as a function of the jet scattering angle with respect to the beam axis. The energy asymmetry is measured in the semileptonic tt¯ decay channel, and the hadronically decaying top quark must have transverse momentum above 350GeV. The results are corrected for detector effects to particle level in three bins of the scattering angle of the associated jet. The measurement agrees with the SM prediction at next-to-leading-order accuracy in quantum chromodynamics in all three bins. In the bin with the largest expected asymmetry, where the jet is emitted perpendicular to the beam, the energy asymmetry is measured to be - 0.043 ± 0.020 , in agreement with the SM prediction of - 0.037 ± 0.003. Interpreting this result in the framework of the Standard Model effective field theory (SMEFT), it is shown that the energy asymmetry is sensitive to the top-quark chirality in four-quark operators and is therefore a valuable new observable in global SMEFT fits

    Impact of renal impairment on atrial fibrillation: ESC-EHRA EORP-AF Long-Term General Registry

    Get PDF
    Background: Atrial fibrillation (AF) and renal impairment share a bidirectional relationship with important pathophysiological interactions. We evaluated the impact of renal impairment in a contemporary cohort of patients with AF. Methods: We utilised the ESC-EHRA EORP-AF Long-Term General Registry. Outcomes were analysed according to renal function by CKD-EPI equation. The primary endpoint was a composite of thromboembolism, major bleeding, acute coronary syndrome and all-cause death. Secondary endpoints were each of these separately including ischaemic stroke, haemorrhagic event, intracranial haemorrhage, cardiovascular death and hospital admission. Results: A total of 9306 patients were included. The distribution of patients with no, mild, moderate and severe renal impairment at baseline were 16.9%, 49.3%, 30% and 3.8%, respectively. AF patients with impaired renal function were older, more likely to be females, had worse cardiac imaging parameters and multiple comorbidities. Among patients with an indication for anticoagulation, prescription of these agents was reduced in those with severe renal impairment, p <.001. Over 24 months, impaired renal function was associated with significantly greater incidence of the primary composite outcome and all secondary outcomes. Multivariable Cox regression analysis demonstrated an inverse relationship between eGFR and the primary outcome (HR 1.07 [95% CI, 1.01–1.14] per 10 ml/min/1.73 m2 decrease), that was most notable in patients with eGFR <30 ml/min/1.73 m2 (HR 2.21 [95% CI, 1.23–3.99] compared to eGFR ≄90 ml/min/1.73 m2). Conclusion: A significant proportion of patients with AF suffer from concomitant renal impairment which impacts their overall management. Furthermore, renal impairment is an independent predictor of major adverse events including thromboembolism, major bleeding, acute coronary syndrome and all-cause death in patients with AF
    • 

    corecore