79 research outputs found

    Report and preliminary results of R/V POSEIDON cruise POS500, LISA, Ligurian Slope AUV mapping, gravity coring and seismic reflection, Catania (Italy) – Malaga (Spain), 25.05.2016 – 09.06.2016

    Get PDF
    Cruise POS500 “LISA” with R/V Poseidon studied the western Ligurian Margin off Southern France, an area in the northeastern part of the western Mediterranean Sea characterized by its active tectonism and frequent mass wasting. The region near the Var estuary close to the city of Nice is particularly suited for landslide research because it represents a natural laboratority where it is possible to study a series of trigger processes of geological and anthropogenic origin. The aim of this MARUM expedition was to: i. Study fresh water seepage in the marine Nice airport landslide and adjacent stable plateau in 15-50 m water depth using water sampling, CTD and geochemistry; ii. Recover and deploy a number of observatories that monitor, pressure, temperature, tilt and seismicity; iii. Run an AUV micro-bathymetric survey with MARUM AUV SEAL5000 to complement existing multibeam maps; and iv. Acquire additional high-resolution seismic reflection profiles to unravel the complex architecture of the Nice slope and Var delta. In a period of approximately two weeks, we acquired valuable geophysical information that helps to understand the evolution of this portion of the Ligurian Margin and further to support an active Amphibious Drilling proposal submitted to ICDP and IODP. We could also show that heavy spring rainfall plus melt water from the French Maritime Alps supplied sufficient hydraulic forcing to push Var aquifer groundwaters to seep into the marine deposits and water column. Freshening was strongest in the 1979 Nice landslide scar, but was also found at the outer edge of the shelf. Recovery and redeployment of various observatory prototypes worked well, both for the MARUM MeBo seafloor drillstring tolos and independent piezometers. Observatory data have yet to be evaluated. In addition, geochemical analyses of bottom waters and pore waters was deferred to shore-based laboratorios except for salinity estimates using a refractometer. Seismic processing was started onboard, but is largely taking place post-cruise at University Bremen

    Highly dispersed PTFE/Co3O4 flexible films as photocatalyst showing fast kinetic performance for the discoloration of azo-dyes under solar irradiation

    Get PDF
    Small nanosized clusters of Co3O4 coated on PTFE (polytetrafluoroethylene) flexible film is reported as a novel supported photocatalyst effective in the fast discoloration of the azo-dye Orange II under simulated solar radiation in the presence of oxone (2KHSO5·KHSO4·K2SO4). The photocatalytic discoloration of Orange II on the PTFE/Co3O4 films proceeds within minutes and the process could be repeated many times without a loss in photocatalyst stability. The photodiscoloration proceeds with a photonic efficiency of ∼1. The PTFE seems to act as a structure forming matrix for the colloidal Co3O4 coated on it surface leading to nanosized clusters of Co3O4. Monitoring the amount of Co2+-ions shows the Co2+-ions from the PTFE/Co3O4 during the photocatalysis enter the solution and at a later are stage re-adsorbed the Co3O4 crystallographic network (∼8 min). By elemental analysis (EA) the loading of Co-loading per cm2 PTFE film was found to vary between 1% and 2%. Transmission electron microscopy (TEM) shows the size of the Co3O4 clusters to vary between 3 and 10 nm. Electron dispersive spectrometry (EDS) confirms the presence of Co on the PTFE. X-ray photoelectron spectroscopy (XPS) of the PTFE/Co3O4 films reveal a partial reduction of the Co3O4 after Orange II discoloration leading to a substantial increase of the amount of Co(II) species in the Co3O4. Physical insight is provided into the catalyst film surface by carrying out Ar-sputtering of the PTFE/Co3O4 surface to remove the catalyst overlayers up to ∼20 nm

    Thermodynamics of lattice QCD with two light quark flavours on a 16^3 x 8 lattice II

    Get PDF
    We have extended our earlier simulations of the high temperature behaviour of lattice QCD with two light flavours of staggered quarks on a 163×816^3 \times 8 lattice to lower quark mass (m_q=0.00625). The transition from hadronic matter to a quark-gluon plasma is observed at 6/g2=5.49(2)6/g^2=5.49(2) corresponding to a temperature of Tc140T_c \approx 140MeV. We present measurements of observables which probe the nature of the quark-gluon plasma and serve to distinguish it from hadronic matter. Although the transition is quite abrupt, we have seen no indications that it is first order.Comment: 23 pages, RevteX, 6 encapsulated postscript figure

    Hadron Spectrum in QCD with Valence Wilson Fermions and Dynamical Staggered Fermions at $6/g^2=5.6

    Full text link
    We present an analysis of hadronic spectroscopy for Wilson valence quarks with dynamical staggered fermions at lattice coupling 6/g2=β=5.66/g^2 = \beta=5.6 at sea quark mass amq=0.01am_q=0.01 and 0.025, and of Wilson valence quarks in quenched approximation at β=5.85\beta=5.85 and 5.95, both on 163×3216^3 \times 32 lattices. We make comparisons with our previous results with dynamical staggered fermions at the same parameter values but on 16416^4 lattices doubled in the temporal direction.Comment: 32 page

    Simple Matrix Elements with Dynamical Fermions

    Full text link
    We report on studies of simple matrix elements from simulations with two flavors of sea quarks, both staggered and Wilson. We show the decay constants of vector and pseudoscalar mesons. The effects of sea quarks are small. These simulations are done at relatively large lattice spacing compared to most quenched studies.Comment: 4 page uuencoded postscript poster session for Lattice 93, COLO-HEP-33

    Effects of spatial size, lattice doubling and source operator on the hadron spectrum with dynamical staggered quarks

    Get PDF
    We have extended our previous study of the lattice QCD spectrum with 2 flavors of staggered dynamical quarks at 6/g2=5.66/g^2=5.6 and amq=0.025am_q=0.025 and 0.01 to larger lattices, with better statistics and with additional sources for the propagators. The additional sources allowed us to estimate the Δ\Delta mass and to measure the masses of all mesons whose operators are local in time. These mesons show good evidence for flavor symmetry restoration, except for the masses of the Goldstone and non-Goldstone pions. PCAC is observed in that mπ2mqm_\pi^2 \propto m_q, and fπf_\pi is estimated. Use of undoubled lattices removes problems with the pion propagator found in our earlier work. Previously we found a large change in the nucleon mass at a quark mass of amq=0.01am_q=0.01 when we increased the spatial size from 12 to 16. No such effect is observed at the larger quark mass, amq=0.025am_q=0.025. Two kinds of wall source were used, and we have found difficulties in getting consistent results for the nucleon mass between the two sources.Comment: 30 pages PostScript fil

    Preparation, stabilization and characterization of TiO2 on thin polyethylene films (LDPE): Photocatalytic applications

    Get PDF
    An innovative way to fix preformed nanocrystalline TiO2 on low-density polyethylene film (LDPE-TiO2) is presented. The LDPE-TiO2 film was able to mediate the complete photodiscoloration of Orange II using about seven times less catalyst than a TiO2 suspension and proceeded with a photonic efficiency of ~0.02. The catalyst shows photostability over long operational periods during the photodiscoloration of the azo dye Orange II. The LDPE-TiO2 catalyst leads to full dye discoloration under simulated solar light but only to a 30% TOC reduction since long-lived intermediates generated in solution seem to preclude full mineralization of the dye. Physical insight is provided into the mechanism of stabilization of the LDPE-TiO2 composite during the photocatalytic process by X-ray photoelectron spectroscopy (XPS). The adherence of TiO2 on LDPE is investigated by electron microscopy (EM) and atomic force microscopy (AFM). The thickness of the TiO2 film is seen to vary between 1.25 and 1.69 mm for an unused LDPE-TiO2 film and between 1.31 and 1.50 mmfor a sample irradiated 10h during Orange II discoloration pointing out to a higher compactness of the TiO2 film after the photocatalysis

    The Effective Electroweak Chiral Lagrangian: The Matter Sector

    Get PDF
    We parametrize in a model-independent way possible departures from the minimal Standard Model predictions in the matter sector. We only assume the symmetry breaking pattern of the Standard Model and that new particles are sufficiently heavy so that the symmetry is non-linearly realized. Models with dynamical symmetry breaking are generically of this type. We review in the effective theory language to what extent the simplest models of dynamical breaking are actually constrained and the assumptions going into the comparison with experiment. Dynamical symmetry breaking models can be approximated at intermediate energies by four-fermion operators. We present a complete classification of the latter when new particles appear in the usual representations of the SU(2)L×SU(3)cSU(2)_L\times SU(3)_c group as well as a partial classification in the general case. We discuss the accuracy of the four-fermion description by matching to a simple `fundamental' theory. The coefficients of the effective lagrangian in the matter sector for dynamical symmetry breaking models (expressed in terms of the coefficients of the four-quark operators) are then compared to those of models with elementary scalars (such as the minimal Standard Model). Contrary to a somewhat widespread belief, we see that the sign of the vertex corrections is not fixed in dynamical symmetry breaking models. This work provides the theoretical tools required to analyze, in a rather general setting, constraints on the matter sector of the Standard Model.Comment: Latex, 45 pages, 8 eps figures. Sections 5, 6 and 9 have been rewritten to clarify the contents. Some mistakes and typos have been corrected. Two references have been added. Figures 7 and 8 have been modifie

    Discrete approaches to quantum gravity in four dimensions

    Get PDF
    The construction of a consistent theory of quantum gravity is a problem in theoretical physics that has so far defied all attempts at resolution. One ansatz to try to obtain a non-trivial quantum theory proceeds via a discretization of space-time and the Einstein action. I review here three major areas of research: gauge-theoretic approaches, both in a path-integral and a Hamiltonian formulation, quantum Regge calculus, and the method of dynamical triangulations, confining attention to work that is strictly four-dimensional, strictly discrete, and strictly quantum in nature.Comment: 33 pages, invited contribution to Living Reviews in Relativity; the author welcomes any comments and suggestion
    corecore