119 research outputs found
Renormalization group approach to nonextensive statistical mechanics
We analyze a simple classical Hamiltonian system within the hypothesis of
renormalizability and isotropy that essentially led Maxwell to his ubiquitous
Gaussian distribution of velocities. We show that the equilibrium-like
power-law energy distribution emerging within nonextensive statistical
mechanics satisfies these hypothesis, in spite of not being factorizable. A
physically satisfactory renormalization group emerges in the space,
where q and respectively are the entropic index characterizing
nonextensivity, and an appropriate temperature. This scenario enables the
conjectural formulation of the one to be expected for d-dimensional systems
involving long-range interactions (e.g., a classical two-body potential
with ). As a corollary, we recover
a quite general expression for the classical principle of equipartition of
energy for arbitrary q.Comment: 4 pages, 3 ps figure
Scale-adjusted metrics for predicting the evolution of urban indicators and quantifying the performance of cities
More than a half of world population is now living in cities and this number
is expected to be two-thirds by 2050. Fostered by the relevancy of a scientific
characterization of cities and for the availability of an unprecedented amount
of data, academics have recently immersed in this topic and one of the most
striking and universal finding was the discovery of robust allometric scaling
laws between several urban indicators and the population size. Despite that,
most governmental reports and several academic works still ignore these
nonlinearities by often analyzing the raw or the per capita value of urban
indicators, a practice that actually makes the urban metrics biased towards
small or large cities depending on whether we have super or sublinear
allometries. By following the ideas of Bettencourt et al., we account for this
bias by evaluating the difference between the actual value of an urban
indicator and the value expected by the allometry with the population size. We
show that this scale-adjusted metric provides a more appropriate/informative
summary of the evolution of urban indicators and reveals patterns that do not
appear in the evolution of per capita values of indicators obtained from
Brazilian cities. We also show that these scale-adjusted metrics are strongly
correlated with their past values by a linear correspondence and that they also
display crosscorrelations among themselves. Simple linear models account for
31%-97% of the observed variance in data and correctly reproduce the average of
the scale-adjusted metric when grouping the cities in above and below the
allometric laws. We further employ these models to forecast future values of
urban indicators and, by visualizing the predicted changes, we verify the
emergence of spatial clusters characterized by regions of the Brazilian
territory where we expect an increase or a decrease in the values of urban
indicators.Comment: Accepted for publication in PLoS ON
Distance to the scaling law: a useful approach for unveiling relationships between crime and urban metrics
We report on a quantitative analysis of relationships between the number of
homicides, population size and other ten urban metrics. By using data from
Brazilian cities, we show that well defined average scaling laws with the
population size emerge when investigating the relations between population and
number of homicides as well as population and urban metrics. We also show that
the fluctuations around the scaling laws are log-normally distributed, which
enabled us to model these scaling laws by a stochastic-like equation driven by
a multiplicative and log-normally distributed noise. Because of the scaling
laws, we argue that it is better to employ logarithms in order to describe the
number of homicides in function of the urban metrics via regression analysis.
In addition to the regression analysis, we propose an approach to correlate
crime and urban metrics via the evaluation of the distance between the actual
value of the number of homicides (as well as the value of the urban metrics)
and the value that is expected by the scaling law with the population size.
This approach have proved to be robust and useful for unveiling
relationships/behaviors that were not properly carried out by the regression
analysis, such as i) the non-explanatory potential of the elderly population
when the number of homicides is much above or much below the scaling law, ii)
the fact that unemployment has explanatory potential only when the number of
homicides is considerably larger than the expected by the power law, and iii) a
gender difference in number of homicides, where cities with female population
below the scaling law are characterized by a number of homicides above the
power law.Comment: Accepted for publication in PLoS ON
Extensive Characterization of Seismic Laws in Acoustic Emissions of Crumpled Plastic Sheets
Statistical similarities between earthquakes and other systems that emit
cracking noises have been explored in diverse contexts, ranging from materials
science to financial and social systems. Such analogies give promise of a
unified and universal theory for describing the complex responses of those
systems. There are, however, very few attempts to simultaneously characterize
the most fundamental seismic laws in such systems. Here we present a complete
description of the Gutenberg-Richter law, the recurrence times, Omori's law,
the productivity law, and Bath's law for the acoustic emissions that happen in
the relaxation process of uncrumpling thin plastic sheets. Our results show
that these laws also appear in this phenomenon, but (for most cases) with
different parameters from those reported for earthquakes and fracture
experiments. This study thus contributes to elucidate the parallel between
seismic laws and cracking noises in uncrumpling processes, revealing striking
qualitative similarities but also showing that these processes display unique
features.Comment: Accepted for publication in EP
Complexity-Entropy Causality Plane as a Complexity Measure for Two-dimensional Patterns
Complexity measures are essential to understand complex systems and there are
numerous definitions to analyze one-dimensional data. However, extensions of
these approaches to two or higher-dimensional data, such as images, are much
less common. Here, we reduce this gap by applying the ideas of the permutation
entropy combined with a relative entropic index. We build up a numerical
procedure that can be easily implemented to evaluate the complexity of two or
higher-dimensional patterns. We work out this method in different scenarios
where numerical experiments and empirical data were taken into account.
Specifically, we have applied the method to i) fractal landscapes generated
numerically where we compare our measures with the Hurst exponent; ii) liquid
crystal textures where nematic-isotropic-nematic phase transitions were
properly identified; iii) 12 characteristic textures of liquid crystals where
the different values show that the method can distinguish different phases; iv)
and Ising surfaces where our method identified the critical temperature and
also proved to be stable.Comment: Accepted for publication in PLoS On
Shape patterns in popularity series of video games
In recent years, digital games have become increasingly present in people's
lives both as a leisure activity or in gamified activities of everyday life.
Despite this growing presence, large-scale, data-driven analyses of video games
remain a small fraction of the related literature. In this sense, the present
work constitutes an investigation of patterns in popularity series of video
games based on monthly popularity series, spanning eleven years, for close to
six thousand games listed on the online platform Steam. Utilizing these series,
after a preprocessing stage, we perform a clustering task in order to group the
series solely based on their shape. Our results indicate the existence of five
clusters of shape patterns named decreasing, hilly, increasing, valley, and
bursty, with approximately half of the games showing a decreasing popularity
pattern, 20.7% being hilly, 11.8% increasing, 11.0% bursty, and 9.1% valley.
Finally, we have probed the prevalence and persistence of shape patterns by
comparing the shapes of longer popularity series during their early stages and
after completion. We have found the majority of games tend to maintain their
pattern over time, except for a constant pattern that appears early in
popularity series only to later originate hilly and bursty popularity series.Comment: 36 pages, 19 figure
Complexity-entropy causality plane: a useful approach for distinguishing songs
Nowadays we are often faced with huge databases resulting from the rapid growth of data storage technologies. This is particularly true when dealing with music databases. In this context, it is essential to have techniques and tools able to discriminate properties from these massive sets. In this work, we report on a statistical analysis of more than ten thousand songs aiming to obtain a complexity hierarchy. Our approach is based on the estimation of the permutation entropy combined with an intensive complexity measure, building up the Complexity-entropy causality plane. The results obtained indicate that this representation space is very promising to discriminate songs as well as to allow a relative quantitative comparison among songs. Additionally, we believe that the here-reported method may be applied in practical situations since it is simple, robust and has a fast numerical implementation.Facultad de Ingenierí
- …
