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Abstract

Complexity measures are essential to understand complex systems and there are numerous definitions to analyze one-
dimensional data. However, extensions of these approaches to two or higher-dimensional data, such as images, are much
less common. Here, we reduce this gap by applying the ideas of the permutation entropy combined with a relative entropic
index. We build up a numerical procedure that can be easily implemented to evaluate the complexity of two or higher-
dimensional patterns. We work out this method in different scenarios where numerical experiments and empirical data were
taken into account. Specifically, we have applied the method to i) fractal landscapes generated numerically where we
compare our measures with the Hurst exponent; ii) liquid crystal textures where nematic-isotropic-nematic phase
transitions were properly identified; iii) 12 characteristic textures of liquid crystals where the different values show that the
method can distinguish different phases; iv) and Ising surfaces where our method identified the critical temperature and
also proved to be stable.
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Introduction

Investigations related to the so called complex systems are

widely spread among different scientific communities, ranging

from physics and biology to economy and psychology. A

considerable part of these works deals with empirical data aiming

to extract patterns, regularities or laws that rule the dynamics of

the system. In this direction, the concept of complexity measures

often emerges. Complexity measures can compare empirical data

such as time series and classify them in somewhere between

regular, chaotic or random [1], while other complexity measures

can differentiate between degrees of correlations [2]. Examples of

these measures include algorithmic complexity [3], entropies [4],

relative entropies [5], fractal dimensions [6], and Lyapunov

exponents [7]. These seminal works are still motivating new

definitions, and today there are numerous definitions of complex-

ity, which have been successful applied to different areas such as

medicine [8,9], ecology [10–13], astrophysics [14–16], and music

[17,18].

It is surprising that this large number of complexity measures is

mainly focused on one-dimensional data, while much less attention

has been paid to two and higher-dimensional structures such as

images. Naturally, there are few exceptions such as the work of

Grassberger [19] and more recent Refs. [20–22], though some of

the authors of these papers agree that a higher-dimensional

approach still represents an open and subtle problem. Further-

more, as it was stated by Bandt and Pompe [23], most of the

complexity measures depend on specific algorithms or recipes for

processing the data which may also depend on tuning parameters.

As a direct consequence, there are huge difficulties for reproducing

previous results without the knowledge of details of the methods.

Bandt and Pompe not only raised this problem, but they also

proposed an alternative method that tries to overcome the

previous problems, introducing what they call permutation entropy –

a natural complexity measure for time series. There are many

recent applications of this new technique that confirm its

usefulness [24–31]. In particular, Rosso et al. [1] have successful

applied the Bandt and Pompe ideas together with a relative

entropic measure [32] to differentiate chaotic time series from

stochastic ones. They have constructed a diagram, which was first

proposed by López-Ruiz et al. [33], (called as complexity-entropy

causality plane) by plotting the relative entropic measure versus

the permutation entropy. Intriguingly, chaotic and stochastic series

are located in different regions of this representation space.

Here, we show that the complexity-entropy causality plane can

be extended for higher-dimensional patterns. We apply this new

approach in different scenarios related to two-dimensional

structures and the results indicate that the method is very

promising for distinguishing between two-dimensional patterns.

The following sections are organized as follows. Section II is

devoted to review briefly the properties of the permutation

information-theory-derived quantifiers and the complexity-entro-

py causality plane, and also to define an appropriate way to

generalize these definitions to higher-dimensional data. In Section

III, we work out several applications based on numerical and

empirical data. Section IV presents a summary of our results.
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Methods

The ingenious idea of Bandt and Pompe [23] was to define a

measure that may be easily applied to any type of time series. The

method lies on associating symbolic sequences to the segments of

the time series based on the existence of local order, and next, by

using probability distribution associated to these symbols, to

estimate the complexity quantifier. For purpose of definition, let us

consider a time series fxtgt~1,...,n composed by n elements and

also d-dimensional vectors (dw1) defined by

(s).(xs{(d{1),xs{(d{2), . . . ,xs{1,xs) ,

where s~d,dz1, . . . ,n. Next, for all the (n{dz1) vectors, we

evaluate the permutations p~(r0,r1, . . . ,rd{1) of (0,1, . . . ,d{1)
defined by xs{rd{1

ƒxs{rd{2
ƒ . . . ƒxs{r1

ƒxs{r0
. The d!

possible permutations of p will be the accessible states of the

system, and for each state we estimate the ordinal pattern

probability given by

p(p)~
#fsDsƒn{dz1; (s)has type pg

n{dz1
,

where the symbol # stands for the number of occurrences of the

permutation p. Now, we can apply the ordinal patterns probability

distribution, P~fp(p)g, to estimate a complexity measure based

on some entropic formulation.

Before advancing, we note that the previous method may be

extended to higher-dimensional data structures such as images. In

order to do this, we consider that the system is now represented by

a two-dimensional array fyj
ig

j~1,...,ny

i~1,...,nx
of size nx|ny. In analogy to

the vector (s), we define dx|dy matrices (dx,dyw1) given by

(sx,sy).
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,

where sx~dx,dxz1, . . . ,nx and sy~dy,dyz1, . . . ,ny. Next, for

all these (nx{dxz1)(ny{dyz1) matrices, we evaluate the

permutations p~½(r0,u0),(r1,u0), . . . ,(rdx{1,u0), . . . ,(r0,udy{1),

(r1,udy{1), . . . ,(rdx{1,udy{1)� of (0,1, . . . ,dx dy{1) defined

by y
sy{udy{1
sx{rdx{1

ƒy
sy{udy{1
sx{rd{2

ƒ . . . ƒy
sy{udy{1
sx{r1

ƒy
sy{udy{1
sx{r0

ƒ . . .

ƒy
sy{u0
sx{rdx{1

ƒy
sy{u0
sx{rd{2

ƒ . . . ƒy
sy{u0
sx{r1

ƒy
sy{u0
sx{r0

. The system

can now access (dx dy)! states for which we calculate the

probability distribution P~fp(p)g through the relative frequen-

cies given by

p(p)~

#f(sx,sy)jsxƒnx{dxz1 and syƒny{dyz1; (sx,sy) has typepg
(nx{dxz1)(ny{dyz1)

For easier understanding, we illustrate this procedure for a small

array in Fig. 1.

Naturally, the order procedure that defines the permutation p is

no longer unique as in the one-dimensional case. For instance,

instead of ordering the elements of (sx,sy) row-by-row, we could

Figure 1. Schematic representation of the construction of the accessible states. In this example we have a 3|3 array (left panel) and we
choose the embedding dimensions dx~2 and dy~2. In the right panel we illustrate the construction of the states. We first obtain the sub-matrix
corresponding to sx~2 and sy~2 that have as elements (1,2,8,3) and, after sorting, this sub-matrix leads to the state ‘‘0132’’. We thus move to next
sub-matrix sx~3 and sy~2 which have the elements (2,1,3,4) and that, after sorting, leads to the state ‘‘1023’’. The last two remaining matrices lead

to the states ‘‘1230’’ and ‘‘0132’’. Finally, we estimate the probabilities p(p), that are, p(00013200)~2=4~0:5, p(00102300)~1=4~0:25 and
p(00123000)~1=4~0:25 which are then used in the equations (1) and (2), leading to H&0:33 and C&0:27.
doi:10.1371/journal.pone.0040689.g001
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also order column-by-column. However, these other definitions

will only change the ‘‘name’’ of the states in such a way that the set

P~fp(p)g will remain unchanged. Thus, there is no lost of

generalization in assuming a given order recipe for defining p.

We note that this procedure is straightforward generalized to

accomplish higher-dimensional structures (e.g., the volumetric

brain images obtained via functional magnetic resonance imag-

ing), and that it recovers the one-dimensional case by setting ny~1
and dy~1. Here, for simplicity, we focus our analysis on two-

dimensional structures.

The parameters dx and dy (known as embedding dimensions)

play an important role in the estimation of the permutation

probability distribution P, since they determine the number of

accessible states. In the one-dimensional case, it is usual to choose

d!%n in order to obtain reliable statistics in the one-dimensional

case (for practical purposes, Bandt and Pompe recommend

d~3, . . . ,7 [23]). For the two-dimensional case a similar

relationship must hold, i.e., (dxdy)!%nxny. To go further, we

need to rewrite the entropic measures used in Refs. [1,23]. The

first one is called normalized permutation entropy [23] and it is

obtained by applying the Shannon’s entropy to the probabilities

P~fp(p)g, i.e.,

H½P�~ S½P�
Smax

, ð1Þ

where S½P�~{
P

p(p) log p(p) and Smax~ log½(dxdy)!�. The

value of Smax is obtained by considering all the (dxdy)! accessible

states to be equiprobable, i.e., P~Pe~1=(dxdy)!. By definition,

0ƒH½P�ƒ1, where the upper bound occurs for a completely

random array. We expect H½P�v1 for arrays that exhibit some

kind of correlated dynamics.

The other measure [1] is defined by.

C½P�~Q½P,Pe�H½P� , ð2Þ

where Q½P,Pe� is a relative entropic metric between the empirical

ordinal probability P~fp(p)g and the equiprobable state

Pe~1=(dxdy)!. The quantity Q½P,Pe� is known as disequilibrium

and it is defined in terms of the Jensen-Shannon divergence [34]

(or also in terms of a symmetrized Kullback-Leibler divergence

[35]) and can be written as

Q½P,Pe�~
S½(PzPe)=2�{S½P�=2{S½Pe�=2

Qmax

, ð3Þ

where

Qmax~

{
1

2

(dxdy)!z1

(dxdy)!
log½(dxdy)!z1�{2 log½2(dxdy)!�z log½(dxdy)!�

� �

is the maximum possible value of Q½P,Pe�, obtained when one of

the components of P is equal to one and all the other vanish.

The disequilibrium C quantifies the degree of correlational

structures providing important additional information that may

not be carried only by the permutation entropy. In addition, for a

given H½P� value there exists a range of possible values for C½P�
[36]. This is the main reason why Rosso et al. [1] proposed to

employ a diagram of C½P� versus H½P� as a diagnostic tool,

building up the complexity-entropy causality plane.

Results and Discussion

In the following, we will calculate the diagram of C½P� versus

H½P� to measure the complexity and to distinguish among

different two-dimensional patterns.

Fractal Surfaces
We generate fractal surfaces through the random midpoint

displacement algorithm [37]. This algorithm starts with a square.

For each vertex, we assign a random value representing the surface

height. Next, we add a new point located at the center of the initial

square. We set the height of this point equal to the average height

of the previous four vertex plus a Gaussian random number with

zero mean and standard-deviation d1. We also add four points

located at the middle segments which connects each initial vertex.

For these four points, the heights are equal to the average value

between the two closest vertex and the middle point plus a

Gaussian random number with zero mean and standard-deviation

d1. Now, we imagine that these 9 points represent four new

squares and, for each one, we apply the previous procedure using

d2. By repeating this process k times and using dk~d0 2{kh
2 , we

should obtain a square surface of side 2kz1 with fractal

properties. Here, h is the Hurst exponent and D~3{h is the

surface fractal dimension. Figure 2 shows several surfaces

generated through this procedure for different values of h.

We apply our method for these surfaces aiming to verify how

the permutation quantifiers H and C change with the Hurst

exponent h, as it is shown in Fig. 3. In these 3d plots, we show the

localization in the causality plane obtained for different values of h
evaluated from 1025|1025 surfaces (k~10). In Fig. 3a, we use

dx~2 and dy~3 (circles), and dx~3 and dy~2 (squares) as

embedding dimensions. Note that the values of H and C are

practically invariant under the rotation dx?dy and dy?dx. This

invariance is related to the fact that in these fractal surfaces there is

not preferential direction. In Fig. 3b, we employ dx~3 and dy~3.

We note basically the same dependence but a different range for

H and C, since this change increases the number of accessible

states. These results show that our method properly differentiates

fractal surfaces concerning the Hurst exponent. Moreover, we

investigate the robustness of the permutation quantifiers under

several realizations of the random midpoint displacement algo-

rithm and the results show that both indexes are very stable. For

example, the standard-deviation in the values of H and C are

usually smaller than 10{4 when considering k~10.

Liquid Crystal Textures
Another interesting application is related to different patterns

that a thin film of a liquid crystal exhibits. These textures are

obtained by observing a thin sample of liquid crystal placed

between two crossed polarizers in a microscope. The textures give

useful information about the macroscopic structure of the liquid

crystal. For instance, different phases have different typical

textures, and by tracking their evolution one can properly identify

the phase transition.

We first study a lyotropic liquid crystal under isotropic-nematic-

isotropic phase transition. Figure 4 shows three snapshots of the

texture at different temperatures. In this case, we clearly note the

differences in the textures. The leftmost and rightmost textures are

at the isotropic phase while the middle one is at the nematic phase.

We observe that the pattern is very complex for the nematic phase,

while for the isotropic one it is basically random.

We calculate H and C as a function of the temperature for

different values of the embedding dimensions, as it is shown in

Complexity Measure for Two-dimensional Patterns
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Fig. 5. In these plots, the different shaded regions represent the

different liquid crystal phases. We note that the phase transitions

are successful identified independently of dx and dy. However,

Fig. 5c and 5d show a slight different dependence of H and C

versus the temperature when considering dx~2 and dy~3 or

dx~3 and dy~2. Because the liquid crystal sample is placed in

elongated capillary tube, there is a surface effect that act on the

liquid crystal molecules. This effect is usually amplified at the

phase transition and it is also the reason for differences between

the embedding dimensions.

In this particular phase transition, the difference between the

textures are large enough that it can be identified just by visual

inspection. However, this is not the usual case and many phase

transitions are very difficult to identify. In this context, an

interesting question is whether our method can help to distinguish

different phases. To address this question, we evaluate H and C

for twelve characteristic textures of different liquid crystals. We

download these textures from the webpage of the Liquid Crystal

Institute at Kent State University [39] and Fig. 6 shows the value

of H and C for each texture in the causality plane. The results

allow to conclude that the method ranks the textures in a kind of

complexity order where each characteristic texture occupies a

different place in this representation space. Moreover, the different

Figure 2. Examples of fractal surfaces obtained through the random midpoint displacement method. These are 65|65 surfaces (k~6)
for different values of the Hurst exponent h. For easier visualization, we have scaled the height of the surfaces in order to stay between 0 and 1. We
note that for small values of h the surfaces display an alternation of peaks and valleys (anti-persistent behavior) much more frequent than those one
obtained for larger values of h. For larger values of h, the surfaces are smoother reflecting the persistent behavior induced by the value of hw0:5.
doi:10.1371/journal.pone.0040689.g002

Complexity Measure for Two-dimensional Patterns
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values of H and C indicate that the permutation quantifiers can

also identify smooth phase transitions.

Naturally, the location of each texture in the causality plane

should be related to physical properties of the liquid crystals. A

better understanding of the relation between the permutation

quantifiers and these physical attributes may deserves a more

careful investigation since some properties of liquid crystals such as

the order parameter can be quite hard to empirically measure. In

this context, the existence of a clear relation between, for example,

the order parameter and H or C will be experimentally handy.

Here, we just have the pictures of the textures in such a way that is

very hard to point out these relationships. However, a visual

inspection of Fig. 6 suggests that some of the more ordered phases,

such as the blue phase (this phase display a cubic structure of

defects), are located in the central part of the causality plane

(region of higher complexity), while other textures which present a

large number of non-ordered defects, such as the Smectic B and C,

are positioned closer to the aleatory limit (C?0 and H?1). Thus,

it seems that the permutation quantifiers are capturing in

somehow the competition between the orientational order of the

phase and, also, the number of defects present in the textures.

Ising Surfaces
As a last application, we study the permutation measures H and

C applied to Ising surfaces [40,41]. These surfaces are obtained by

accumulating the lattice spin values si[f{1,1g of the Ising model

defined by the Hamiltonian.

H~{
X
Si,jT

sisj , ð4Þ

where the sum is over all the pairs of first neighbor sites in the

Figure 3. Dependence of the complexity-entropy causality plane on Hurst exponent h. We have employed fractal surfaces of size
1025|1025 (k~10). In (a) we plot C and H versus h for the embedding dimensions dx~2 and dy~3 (circles) and also for dx~3 and dy~2 (squares).
We note the invariance of the index against the rotation dx?dy and dy?dx. In (b) we plot the diagram for dx~dy~3. We observe changes in the
scale of C and H caused by the increasing number of states. In both cases, as h increases the complexity C also increases while the permutation
entropy H decreases. This behavior reflects the differences in the roughness shown in Fig. 2. For values of hv0:5 the surface is anti-persistent which
generates a flatter distribution for the values of P~fp(p)g leading to values of C and H closer to the aleatory limit (C?0 and H?1). For values of
hw0:5 there is a persistent behavior in the surfaces heights which generates a more intricate distribution of P~fp(p)g and, consequently, values of
H and C that are closer to the middle of the causality plane (region of higher complexity).
doi:10.1371/journal.pone.0040689.g003

Figure 4. Characteristic textures of a lyotropic liquid crystal at different temperatures and phases. The lyotropic system used here is a
mixture of potassium laurate (&27:00%), decanol (&6:24%) and deuterium oxide (&66:76%) – suitable concentrations in order to get a isotropic ?
nematic ? isotropic phase sequence [38]. These images were constructed by observing the optical microscopy of a flat capillary which contains the
mixture at different temperatures. Here, we have used the average value of the pixels of the three layers (RGB) of the original image and a rescaled
temperature.
doi:10.1371/journal.pone.0040689.g004

Complexity Measure for Two-dimensional Patterns
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lattice. We numerically solve this spin-1=2 Ising model on a L|L

lattice using the Monte Carlo method with periodic boundary

conditions. By using the spin values, we define the surface height

for each lattice site i as

Si~
X

t

si(t) , ð5Þ

where t represents the number of Monte Carlo steps. In Fig. 7, we

show three surfaces obtained though this procedure for different

values of the reduced temperature T=Tc, where

Tc~2= ln (1z
ffiffiffi
2
p

) is the critical temperature of the model. We

note the complex pattern exhibited by the surface for T=Tc~1,

and the almost random patterns for T=Tcw1 and T=Tcv1.

We first investigate the dependence of H and C on the reduced

temperature T=TC after a large number of Monte Carlo steps

(105) and for L~500. Figures 8a and 8b show H and C for dx~2
and dy~3, and for the rotation dx?dy and dy?dx. We note that,

at the critical temperature, both indexes display a sharp peak and

that they are invariant under the rotation. Moreover, Fig. 8c

presents a 3d visualization of the phase transition for dx~dy~3.

This higher-dimensional representation can be useful when

investigating more complex phase transitions, since a greater

number of degrees of freedom allows the critical point to be more

visible.

We further study the temporal evolution of H and C for

different reduced temperatures, as it is shown in Fig. 9. The initial

values of the spins were chosen equal to 1 and, as we can see, the

values for H and C are different just after one Monte Carlo step.

For T=Tc, the value of H increases over time and around te102

Figure 5. Dependence of the entropic indexes on the temperature of a lyotropic liquid crystal. We plot H versus the temperature in (a)
and C versus the temperature in (b), where we employ dx~dy~2. Figures (c) and (d) present the results for dx~2 and dy~3, and also for dx~3 and
dy~2. The different shaded areas represent the different liquid crystal phases. Note that the phase transitions are properly identified in all cases. Due
to the asymmetry of the elongated capillary tube where the liquid crystal sample is placed, H and C present slight differences under the rotation
dx?dy and dy?dx.
doi:10.1371/journal.pone.0040689.g005

Figure 6. Complexity-entropy causality plane evaluated for
several liquid crystal textures [39]. Here, we have used the
averaged pixel values of the three layers (RGB) of the original image and
dx~2 and dy~3. The image sizes are about 270|200 pixels. We note
that each texture has a unique position in the causality plane which
indicates that the permutation quantifiers are capable of differentiate
not only transitions involving the isotropic phase, but also smoother
phase transitions. We further observe that some high ordered phase
such as the blue phase are located at the central part of the causality
plane (region of higher complexity), while other phases which present a
large number of defects such as the Smectic B and C are closer to the
aleatory limit (C?0 and H?1).
doi:10.1371/journal.pone.0040689.g006

Complexity Measure for Two-dimensional Patterns
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Figure 7. Examples of Ising surfaces for three different temperatures. These surfaces were obtained after 105 Monte Carlo steps for three
different temperatures: below Tc , at Tc and above Tc. In these plots, the height values were scaled to stay between 0 and 1. We note that for
temperatures higher or lower than Tc, the surfaces exhibit an almost random pattern. For values of the temperature closer to Tc the surfaces exhibit
a more complex pattern, reflecting the long-range correlations that appear among the spin sites during the phase transition.
doi:10.1371/journal.pone.0040689.g007

Figure 8. Dependence of the entropic indexes on the reduced temperature for Ising surfaces. (a) The permutation entropy H and (b) the
complexity measure C versus the reduced temperature for dx~2 and dy~3, and also for dx~3 and dy~2. We note invariance of indexes under the
rotation dx?dy and dy?dx. (c) A 3d visualization of the Ising model phase transition when considering dx~dy~3. The gray shadows represent the
dependences of T=Tc on H and of T=Tc on C.
doi:10.1371/journal.pone.0040689.g008
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it reaches a plateau. For T~Tc, the value of H increases up to a

maximum value around te102 and then starts to approach a lower

plateau value. A striking behavior is observed for C, where for all

temperatures the complexity displays a maximum value before it

begins to approach a plateau value. It is worth noting that both

quantifiers are very stable after e104 Monte Carlo steps.

Conclusions
We have proposed a generalization of the complexity-entropy

causality plane to higher-dimensional patterns. We applied this

approach to fractal surfaces, liquid crystal textures and Ising

surfaces. It was shown that the indexes H and C performed very

well for distinguishing between the different roughness of the

fractal surfaces. The indexes properly identified the phase

transitions of a lyotropic liquid crystal and sorted different

characteristic textures in a kind of complexity order. Finally,

concerning the Ising surfaces, the indexes not only had identified

the critical temperature, but also proved to be stable after e104

Monte Carlo steps. The method also has a very fast and simple

numerical evaluation. Taking into account all these findings, we

are very optimist that our method can reduce the gap between

one-dimensional complexity measures and the higher-dimensional

ones.
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