192 research outputs found

    Quantum noise limited and entanglement-assisted magnetometry

    Full text link
    We study experimentally the fundamental limits of sensitivity of an atomic radio-frequency magnetometer. First we apply an optimal sequence of state preparation, evolution, and the back-action evading measurement to achieve a nearly projection noise limited sensitivity. We furthermore experimentally demonstrate that Einstein-Podolsky-Rosen (EPR) entanglement of atoms generated by a measurement enhances the sensitivity to pulsed magnetic fields. We demonstrate this quantum limited sensing in a magnetometer utilizing a truly macroscopic ensemble of 1.5*10^12 atoms which allows us to achieve sub-femtoTesla/sqrt(Hz) sensitivity.Comment: To appear in Physical Review Letters, April 9 issue (provisionally

    Gaussian Optical Ising Machines

    Get PDF
    It has recently been shown that optical parametric oscillator (OPO) Ising machines, consisting of coupled optical pulses circulating in a cavity with parametric gain, can be used to probabilistically find low-energy states of Ising spin systems. In this work, we study optical Ising machines that operate under simplified Gaussian dynamics. We show that these dynamics are sufficient for reaching probabilities of success comparable to previous work. Based on this result, we propose modified optical Ising machines with simpler designs that do not use parametric gain yet achieve similar performance, thus suggesting a route to building much larger systems.Comment: 6 page

    Tensor network states in time-bin quantum optics

    Full text link
    The current shift in the quantum optics community towards large-size experiments -- with many modes and photons -- necessitates new classical simulation techniques that go beyond the usual phase space formulation of quantum mechanics. To address this pressing demand we formulate linear quantum optics in the language of tensor network states. As a toy model, we extensively analyze the quantum and classical correlations of time-bin interference in a single fiber loop. We then generalize our results to more complex time-bin quantum setups and identify different classes of architectures for high-complexity and low-overhead boson sampling experiments

    The nature of aquatic landscapes in the Miocene of western Amazonia: An integrated palaeontological and geochemical approach

    Get PDF
    The Miocene Pebas Formation from the section Santa Rosa de Pichana (Loreto, Peru) was investigated using a combination of analyses of sedimentary facies, molluscan communities and taphonomy, and stable isotopes of both entire shells and growth bands in bivalves. Three sequences, comprising a succession of transgressive, maximum flooding and regressive/prograding intervals, are documented. Molluscs are most common in the transgressive/highstand intervals and are almost absent in regressive/prograding intervals. The fauna is dominated by endemic Pebasian species, such as Pachydon and Dyris spp. The nature of the deposits as well as the availability of oxygen varied in a predictable way within each of the sequences and determined the nature of the assemblages. Highest diversity was reached in the late transgressive phase before the development of dysoxia that was widespread during the late highstand and early regressive/prograding phase. The mollusc and isotope data show no indications of elevated salinities, in contrast to ichnofossils found in the section. This discrepancy is interpreted to result either from temporal separation of the ichnofossils and the mollusc fossils or from evolution beyond usual ecological tolerances of taxa that produced these ichnofossils into freshwater settings

    Sediment flux and composition changes in canyons on a carbonate-siliciclastic margin: evidence from turbidite deposits along the Great Barrier Reef margin

    Get PDF
    The shelf edge and slope of the Great Barrier Reef is heavily incised by submarine canyons which terminate in the Queensland Trough. Traditionally, sedimentation on the margin has been investigated within the framework of idealized siliciclastic or carbonate systems, depending on whether rivers or shallow marine carbonate producers dominate supply. The widely accepted paradigm ('reciprocal' sedimentation) states that sea-level strongly influences shelf, slope and basin sedimentation, with siliciclastics dominating lowstand periods and carbonates dominating transgressions/highstands. However, recent work (e.g., Dunbar and Dickens, 2003) on cores from the slope and basin has challenged this view. These workers argue that accumulation of both siliciclastic and carbonate sediments varies in phase, with the highest rates observed during transgressions, lowest rates during lowstands and moderate sedimentation during highstands. Irrespective of which model is correct, exactly how the sediment (carbonate or siliciclastic) moves from the shelf to the basin, and the role of submarine canyons in this process is not understood. We address this problem directly by investigating sedimentation in the canyons bordering the GBR. Combining new multibeam bathymetry and seismic data with x-radiograph, magnetic susceptibility, insitu reflectance spectroscopy, grain size, CNS, petrologic, pollen and 14C AMS analyses of canyon cores off Cooktown and Cairns, we aim to establish the source, timing and frequency of turbidite events deposited in the canyons over the last glacial to interglacial cycle, thereby testing the competing models. Our preliminary data confirm that: (1) the canyons record a distinct sedimentary shift from siliciclastic turbidites to calciturbidites; (2) the siliciclastic turbidites were deposited before 28 ka - providing strong support for the "reciprocal" model of margin sedimentation; and (3) the canyons have been active throughout the last deglaciation and into the late Holocene

    Boson Sampling in Low-depth Optical Systems

    Get PDF
    Optical losses are the main obstacle to demonstrating a quantum advantage via boson sampling without leaving open the possibility of classical spoofing. We propose a method for generating low-depth optical circuits suitable for boson sampling with very high efficiencies. Our circuits require only a constant number of optical components (namely three) to implement an optical transformation suitable for demonstrating a quantum advantage. Consequently, our proposal has a constant optical loss regardless of the number of optical modes. We argue that sampling from our family of circuits is computationally hard by providing numerical evidence that our family of circuits converges to that of the original boson sampling proposal in the limit of large optical systems. Our work opens a new route to demonstrate an optical quantum advantage.Comment: 11 pages, 6 figure

    Optimizing spontaneous parametric down-conversion sources for boson sampling

    Get PDF
    An important step for photonic quantum technologies is the demonstration of a quantum advantage through boson sampling. In order to prevent classical simulability of boson sampling, the photons need to be almost perfectly identical and almost without losses. These two requirements are connected through spectral filtering, improving one leads to a decrease of the other. A proven method of generating single photons is spontaneous parametric downconversion (SPDC). We show that an optimal trade-off between indistinguishability and losses can always be found for SPDC. We conclude that a 50-photon scattershot boson-sampling experiment using SPDC sources is possible from a computational complexity point of view. To this end, we numerically optimize SPDC sources under the regime of weak pumping and with a single spatial mode

    8x8 Reconfigurable quantum photonic processor based on silicon nitride waveguides

    Get PDF
    The development of large-scale optical quantum information processing circuits ground on the stability and reconfigurability enabled by integrated photonics. We demonstrate a reconfigurable 8x8 integrated linear optical network based on silicon nitride waveguides for quantum information processing. Our processor implements a novel optical architecture enabling any arbitrary linear transformation and constitutes the largest programmable circuit reported so far on this platform. We validate a variety of photonic quantum information processing primitives, in the form of Hong-Ou-Mandel interference, bosonic coalescence/anticoalescence and high-dimensional single-photon quantum gates. We achieve fidelities that clearly demonstrate the promising future for large-scale photonic quantum information processing using low-loss silicon nitride.Comment: Added supplementary materials, extended introduction, new figures, results unchange

    Percutaneous Radiofrequency Ablation of Osteoid Osteomas with Use of Real-Time Needle Guidance for Accurate Needle Placement: A Pilot Study

    Get PDF
    Contains fulltext : 97211.pdf (publisher's version ) (Open Access)PURPOSE: To evaluate the accuracy and technical success of positioning a radiofrequency ablation (RFA) electrode in osteoid osteomas by use of a new real-time needle guidance technology combining cone-beam computed tomography (CT) and fluoroscopy. MATERIALS AND METHODS: Percutaneous RFA of osteoid osteomas was performed in five patients (median age 18 years), under general anesthesia, with the use of cone-beam CT and fluoroscopic guidance for electrode positioning. The outcome parameters were technical success, meaning correct needle placement in the nidus; accuracy defined as the deviation (in mm) from the center of the nidus; and clinical outcome at follow-up. RESULTS: In all five cases, positioning was possible within 3 mm of the determined target location (median nidus size 6.8 mm; range 5-10.2 mm). All procedures were technically successful. All patients were free of pain at clinical follow-up. No complications were observed. CONCLUSION: Real-time fluoroscopy needle guidance based on cone-beam CT is a useful tool to accurately position radiofrequency needles for minimally invasive treatment of osteoid osteomas
    • 

    corecore