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Abstract: The development of large-scale optical quantum information processing circuits
ground on the stability and reconfigurability enabled by integrated photonics. We demonstrate
a reconfigurable 8×8 integrated linear optical network based on silicon nitride waveguides for
quantum information processing. Our processor implements a novel optical architecture enabling
any arbitrary linear transformation and constitutes the largest programmable circuit reported
so far on this platform. We validate a variety of photonic quantum information processing
primitives, in the form of Hong-Ou-Mandel interference, bosonic coalescence/anti-coalescence
and high-dimensional single-photon quantum gates. We achieve fidelities that clearly demonstrate
the promising future for large-scale photonic quantum information processing using low-loss
silicon nitride.
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1. Introduction

Optical quantum information processing (QIP) aims to solve computational tasks such as quantum
simulation [1–4] and quantum machine learning [5,6] more efficiently than can be done with
classical computers, using photons as information carriers and large-scale interferometers as
processors. To perform increasingly complex tasks on increasingly complex interferometers,
maintaining optical path-length stability on a large scale is a central technological challenge.

The key enabling technology for optical QIP is integrated photonics, as it allows linear optical
networks to have interferometric stability and, in addition, reconfigurable functionality, via
tunable beam splitters and phase shifters. Integrated photonics permit, moreover, the realization
of other key components such as squeezed light sources [7], homodyne detection systems [8]
and fast switching [9] that provide a large benefit to quantum information based on continuous
variables [10–13].

On-chip linear optical networks enable a variety of quantum information and communication
protocols such as quantum teleportation [14], on-chip quantum key distribution [15,16], photonic
quantum gates [17] and boson sampling [18–21]. Such structures are also exploited for classical
applications, such as machine learning [5,22–24] and signal processing in microwave photonics
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[25]. Imperative requirements for on-chip linear optical networks are low propagation loss and
high component density.

Amongst the silicon-based platforms, stoichiometric silicon nitride (Si3N4) offers the unique
combination of high index contrast [26] for low bend loss and ultra-low straight-propagation loss
[27,28], enabling thus both dense and low-loss linear optical networks on a compact footprint (see
Fig. 1). Si3N4 is a well-known platform for many classical applications [25,29–32] and shows a
mature state-of-the-art technology [33]. Increasingly, silicon nitride is attracting interest in the
field of quantum optics for its tremendous potential in implementing on-chip single-photon sources
[34,35], squeezed light [36–39], superconductive single-photon detectors [40,41], quantum walks
[42] and time-bin encoding for quantum communication [43,44]. Moreover, due to its wide
spectral transparency range (from 440 nm to 2.5 µm), silicon nitride allows interfacing with all
common quantum light sources, e.g., spontaneous parametric down-conversion, spontaneous
four-wave mixing sources and quantum dots.

Fig. 1. Schematic geometrical layout of the programmable silicon nitride linear optical
waveguide network where tight guiding in high-contrast SiN waveguides is exploited to
form a dense waveguide mesh, with currently 21 Mach-Zehnder interferometers per square
centimeter. Bullets indicate the injection of single photons via the front or side facets of
the chip. The circuit contains delay lines to equalize photon arrival and departure times
at the front and back ports of the internal interferometers. The location of electric heaters
with feed wires and bond pads is shown at the top surface in gold. Choosing bullets with
different colors indicates that the wide transparency range of the waveguides allows using
the processor with quantum light sources over a wide spectral range, from the visible to the
mid-infrared.

A clear demonstration of the suitability of this promising platform for realizing large-scale
universal programmable linear optical networks is, however, still missing.

In fact, doped silica and silicon-on-insulator technologies host, so far, the majority of on-chip
universal linear optical networks for QIP [45]. While the doped silica platform offers low
propagation loss only with a larger footprint, i.e., low component density, silicon-on-insulator
allows for dense optical circuits at the expense of higher loss. As large scale photonic circuits for
QIP require both low propagation losses and high component density, a platform that combines
these properties is very beneficial for the development of QIP. This combination is what silicon
nitride offers.
Here, we demonstrate, for the first time, an 8× 8-mode linear optical network implemented

in a fully reconfigurable photonic processor based on silicon nitride waveguides. The photonic
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processor contains the highest density of components to date compared to other state-of-the-art
processors in other platforms [1,17,46], considering the number of optical components that
can be placed sequentially until the power transmission through the processor is reduced to a
targeted arbitrary value e−1 (for further discussion see section A.1 in Appendix). The lowest
loss measured so far on the silicon nitride platform, in almost straight sections, is 0.045 dB/m
[27], while the lowest loss at sharp curvature has been shown to be as low as 0.13 dB/m at 115
µm radius of curvature [28]. In the Appendix we present an overview on previously measured
loss data vs curvature, which enables to estimate the lowest loss in circuits once the design
of a circuit is specified (see section A.4 in Appendix). The 8× 8-mode photonic processor,
the largest realized so far in silicon nitride, includes 128 reconfigurable elements: 64 tunable
beam splitters, constructed as Mach-Zehnder interferometers with internal thermo-optic phase
shifters, and 64 additional phase shifters, arranged in a novel linear optical architecture. The
processor contains the optical realization of a Blass matrix [47,48], a well-known architecture for
beamforming networks in microwave engineering, where it is used for directional transmission of
radio frequency signals to and from antenna arrays. Translating this architecture from microwave
engineering to optical QIP, the Blass matrix supports the realization of any arbitrary linear
transformation, both unitary [49,50] and non-unitary [51–53]. We show that our processor
preserves the coherence of quantum states by programming the processor to implement quantum
interference. As a proof-of-principle demonstration of the architecture’s capability to implement
non-unitary transformations, we show anti-coalescence of bosons [54–56] on a 2×2 Blass matrix.
Finally, we realize high-dimensional single-photon quantum gates exploiting the whole spatial
mode structure of the processor.

2. Experimental setup

Figure 2 shows a schematic of the experimental setup. The photonic processor (Fig. 2(a)) consists
of 64 unit cells, each composed of a phase shifter (in red) and a tunable beam splitter (in blue), in
an arrangement that enables any arbitrary 8× 8 transformation. Each tunable beam splitter is
constructed as a Mach-Zehnder interferometer, based on two directional couplers and an internal
thermo-optic phase shifter. The 128 thermally tunable elements are remotely controllable and are
designed to each allow a 3

2π phase shift. The tuning range can be extended with longer tunable
elements or stronger current supplies.
The photonic processor is based on stoichiometric silicon nitride waveguides, grown with

low-pressure chemical vapor deposition, with a double-stripe cross-section [33]. The waveguides
exhibit a propagation loss of 0.2 dB/cm for a total on-chip transmission greater than or equal to
60%, a value that corresponds to the longest optical path. The coupling losses to a single-mode
optical fiber are about 2.9 dB/facet which can be greatly reduced (to 0.5 dB/facet [33]) by
waveguide tapering.

Single photons for the experiments are provided with two parametric down-conversion sources
(Fig. 2(b)). Frequency-doubled light from a mode-locked fiber laser, with a center wavelength of
775 nm and a spectral width of 2 nm, is divided into two paths, one containing an adjustable
delay line, and focused into two 10-mm-long periodically-poled KTiOPO4 (PPKTP) waveguides
[57]. Each PPKTP waveguide generates, via type-II down-conversion, orthogonally-polarized
spectrally-separable photon pairs at telecomwavelengths (signal and idler at 1547 nm and 1553 nm,
respectively). After removal of the pump wavelength (F filter for pump rejection) the signal and
idler photons are separated using a polarizing beam splitter (PBS) and collected by single-mode
fibers. The signal photons are used to herald the idler photons with a heralding efficiency of 30%.
The two idler photons are coupled into the photonic processor using polarization-maintaining
fibers. For photodetection, we use a set of fiber-coupled superconducting single-photon detectors
(efficiency 85% [58]).
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Fig. 2. Schematic of the experimental setup. (a) The photonic processor is composed of
64 unit cells, each comprising a phase shifter (red vertical line) and a tunable beam splitter
(blue horizontal line) implemented as a Mach-Zehnder interferometer. The rhomboidal
shape of the processor’s schematic has been chosen for better overview. In the real processor
the elements are arranged on a square mesh. (b) Photon pairs are generated via type-II
parametric down-conversion in PPKTP waveguides pumped with a mode-locked laser at
775 nm and injected into the photonic processor.

3. Results

3.1. Characterization of tunable elements

In order to prepare the processor to perform a desired task, we have to characterize the response
of each tunable elements. The calibration of the tunable elements requires to measure the phase
shift induced by the applied heating voltage, U. This voltage dependence follows a square law,
φ(U) = c+d ·U2, which was measured for each phase shifter by reading interference fringes in the
bar mode photon count value of the respective MZI (see inset Fig. 3 for bar and cross definition).
The theoretically expected response at the bar mode is a sinusoidal function, f = a−b · cos(φ(U)).
The calibration parameters a, b, c and d are real numbers and are determined by a least-squares
fit. Each tunable element is calibrated independently, as described in the supplement of [17],
starting, in our case, from the tunable beam splitter at the bottom corner of the processor through
which light can be directed without having to pass other elements.

Figure 3 shows, as an example, the transmission at the bar mode of the first accessible beam
splitter (bottom corner in Fig. 3) versus the square of the applied heating voltage, as compared
to the theoretically expected response f, which is fit to the data. The residual deviations of the
data from the sinusoidal curve indicates that the beam splitter can be tuned very precisely to any
desired phase value, within its tuning range. As can be seen, a full period of sinusoidal curve is
not achievable. This limitation can be removed both by making longer heaters and by allowing
for higher currents. The distribution of the splitting ratios of the 128 directional couplers can be
described by an average value of 0.497 with a standard deviation of 0.126. The average phase
range is ≈4.59 rad (∼ 3π

2 ) and the average splitting ratio of the tunable beam splitters, i.e., MZI, is
adjustable between 5% and 95%. The distribution of the phase offset at the MZIs has a mean
value of ≈3.5 rad with a standard deviation of 1.85 rad. Taking into account the limited phase
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Fig. 3. Transmission of the first accessible tunable beam splitter. The diamonds are the
experimental data and the blue dashed line is the sinusoidal fit. The visibility of the sinusoid
gives the range of splitting ratio achievable and the period of the sinusoid is related to the
phase shift induced by the tunable element.

range and the phase offset, we find that the tunable beam splitters of the processor, i.e., the MZI,
can always achieve a splitting ratio of 50:50 either for an internal phase shift φ = π

2 or φ = 3π
2 .

3.2. On-chip quantum interference

To demonstrate the suitability of the photonic processor for QIP, we first observe Hong-Ou-Mandel
(HOM) interference [59] between two photons (bullets of the same color in Fig. 4(a)) at various
positions (beam splitters) within the processor (colored disks in Fig. 4(a)).

Fig. 4. (a) Two-photon interference at various locations of the processor (colored circles),
also indicating the used pairs of input waveguides (bullets of the same color). (b) Coincidence
probability versus delay. The two-photon interference measured at the tunable beam splitters
on the processor (red data points) is well in accord with the off-chip reference measurement
(blue data points). All the investigated beam splitters show a similar visibility. The solid
curves indicates Gaussian fits to the data. The error bars are given by the square root of the
number of coincidences.

The processor is configured to route the two incident photons across the chip to a targeted
beam splitter, which is programmed to a reflectivity of 50%, after which the photons are directed
to two outputs. The coincidence count rates at the outputs versus the relative delay of the two
single photons are recorded. In Fig. 4(b) we show, as an example, the HOM interference at one of
the targeted tunable beam splitters (red curve), at the center of the processor in comparison with a
reference measurement, i.e., an off-chip HOM experiment using a fiber beam splitter (blue curve).
It can be seen that the two measurements are well in accord. At a mean photon number of 0.01 we
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measure a reference HOM dip visibility Vref of 81% between the idler photons of the two sources,
with the visibility defined as V =

���Cd−Ci
Cd

���, where Cd and Ci are respectively the coincidence
counts for temporally distinguishable and indistinguishable photons. We repeat the experiment at
various positions, i.e., beam splitters, within the photonic processor obtaining similar results,
i.e., an average visibility of 76%. The consistency of the measured on-chip HOM dips, over
the whole processor depth, with the reference shows that our photonic processor preserves the
spectro-temporal similarity of the photons and confirms the suitability of the photonic processor
for quantum information processing. The difference of visibility between the on- and off-chip
case is probably to be addressed to the residual on-chip path length difference between the optical
path from each input port to the targeted beam splitter.

3.3. Arbitrary linear transformations

Due to its architecture, the photonic processor can be configured to perform arbitrary linear
transformations on its 8 modes, both unitary and non-unitary [51–53], the latter implemented via
ancillary modes. In QIP, non-unitary, lossy, transformations are typically considered detrimental.
However, the additional freedom obtained by removing the restriction of unitarity allows for
new transformations that exhibit exciting behavior such as a tunable quantum interference and
an apparent nonlinear absorption [55,60,61]. Already the simple case of a balanced symmetric
lossy beam splitter contains free parameters determining the relative phase of the transmission
coefficients that enable the tuning of the well-known HOM-like dip, the signature of bosonic
coalescence, into a HOM-peak for bosonic anti-coalescence.
To illustrate how the Blass matrix architecture allows the implementation of non-unitary

transformations, we realize a balanced symmetric lossy beam splitter, involving four beam

splitters and two phase shifters (see Fig. 5(a)), described by the matrix T = 1
2
©«
1 1

1 eiα
ª®¬, with

the phase α a free parameter. The behavior observed in a quantum interference experiment
between two single photons will oscillate between coalescence and anti-coalescence of the
photons depending on this phase α [61], with the well-known HOM-like coalescence for α = π.
The photonic processor is programmed to perform such a non-unitary 2×2 transformation on a
2×2 Blass matrix. Figure 5(b) shows the quantum interference between two single photons for
two different non-unitary 2×2 transformations implemented on the chip, resulting in bosonic
coalescence for phase α = π (red) and anti-coalescence for α = −0.52 rad (blue). The visibility
of these HOM-like dip and peak are 81% and 70%, respectively, as expected for these specific
transformations.

Fig. 5. (a) Implementation of a lossy beam splitter on a 2×2Blassmatrix. The black elements
are set accordingly to the desired T. (b) Coincidence versus delay for two different lossy
transformations T. Measured two-photon bosonic coalescence (red curve)/anti-coalescence
(blue curve) with a visibility of 81% and 70% respectively.
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3.4. High-dimensional quantum logic gates

High-dimensional quantum states, i.e., qudits, are of importance for large-alphabet quantum
communication protocols [62] and cryptography [63]. In optics, qudits can be implemented using
a modal degree of freedom, spatial or temporal, of the single photon to encode information. When
encoding in the spatial degrees of freedom, either via transverse spatial modes [64] or rail-encoded
modes, large unitary linear optical networks can be exploited to implement high-dimensional
quantum logic gates for the control and manipulation of such qudits [65,66]. As shown in
[65], providing all the integer powers of a d-dimensional X-gate, i.e., X, X2 . . .Xd, and of a
d-dimensional Z-gate, enables any unitary operation in a d-dimensional state space, with d= 8 in
our case, where the action of a d-dimensional X-gate can be described as X |j〉 =|j + 1 mod d〉.

Here we demonstrate the realization of an 8-dimensional X-gate (see Fig. 6(a)) and all its integer
powers, i.e., X, X2 . . .X8, in an 8-dimensional-rail encoding thus exploiting the whole mode
structure of the processor. Figure 6(b) shows the measured truth table for the X-gate, obtained by
injecting single photons into each of the 8 inputs. The results for the integer powers of the X-gate
are summarized in Fig. 6(c). The fidelities of these gates are about F8×8=94.6%, where the

fidelity of each gate is calculated as the average state fidelity F =
∑
i

√
pexpi ·p

th
i

8 , with pthi and pexpi

being the theoretical and experimental probabilities for each computational input i, respectively.
Finally, we measure the transformation of a single photon in the coherent superposition state
1√
2
(|1〉5 ± |1〉6) through a 6-dimensional X-gate, with a measured gate fidelity of F6×6=96.2%.

Figure 6(d) shows the action of the 6-dimensional X-gate on the coherent superposition input
state showing that the gate preserves the relative phase of the state.

Fig. 6. (a) Realization of an 8-dimensional X-gate and (b) its measured truth table. (c) Truth
tables of integer powers of the X-gate reported above. The average fidelity is F8×8 = 94.6%.
(d) Evolution of a coherent superposition input state |±〉 = (1/

√
2)(|1〉5±|1〉6) through a

6-dimensional X-gate, giving a fidelity of 91.9%.
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4. Conclusions

We report the realization of a fully programmable and remotely controllable 8× 8-mode photonic
processor, which is the largest universal linear optical network realized on Si3N4. We have
demonstrated a variety of QIP primitives such as on-chip HOM interference, bosonic anti-
coalescence on a 2×2 Blass matrix and high-dimensional single-photon quantum gates. The
obtained results show that our processor retains the indistinguishability of the photons, limited
only by the off-chip single-photon source, and enables any arbitrary linear transformation. Our
findings demonstrate the promising future of the Si3N4 platform for the development of large
reconfigurable universal linear optical quantum circuits.

A. Appendix

A.1. Functional complexity

In the variety of on-chip universal linear optical networks presented so far, two conflicting
developments can be recognized. To achieve higher degrees of functionality, i.e., higher functional
complexity, an increasing number of functional elements, e.g., tunable or switchable, is required.
Since the size of integrated optical chips is constrained to a chip or wafer by fabrication technology,
the density of components on photonic chips can ultimately only be increased via a reducing the
size of components and making sharper bends in the waveguides. On the other hand, it remains
a central requirement to maintain the lowest propagation loss also with a growing number of
components and therefore growing optical path lengths, particularly for quantum processing
schemes. Since tunability, component size and optical loss are intrinsically coupled properties of
the optical materials and fabrication technology used, the future of photonic processors depends
critically on which material platform will enable the greatest functional complexity for a given
level of acceptable loss.
An impressive variety of quantum photonic processors has been demonstrated with different

material platforms. A most prominent representative for semiconductor materials is silicon-on-
insulator (SOI) as employed for demonstration of, e.g., bosonic transport simulation [1]. The
advantage of the SOI platform is that it supports extremely dense photonic circuits, thanks to its
high index contrast between the waveguide core and cladding (∆n ≈ 40% [26]), because this
allows for small feature size via tight bending radii without much radiation loss. Also, due to
the relatively small bandgap, highly responsive tuning elements, with typically π phase shift
within less than 100 µm propagation length, can be realized using carrier injection [67]. On
the other hand, surface scattering in combination with crystallinity and the high index contrast
enhances the optical propagation loss in SOI to levels of several dB/cm, both in straight and
curved waveguide sections. Additional loss occurs as the drawback of high responsivity in tuning,
due to free-carrier absorption [68].
In contrast to semiconductors, amorphous dielectric materials with large bandgap are known

for lowest propagation loss, the most well-known representative being doped silica. This platform
has been used, for instance, for demonstrating universal linear optical circuits [17]. The typical
propagation loss is at least an order of magnitude lower than in SOI, at the level of 0.1 dB/cm
[26], and thermal tuning can be applied without inducing noticeable additional loss. However,
the disadvantage is the low index contrast which is inherent to waveguide cores based on doping
(∆n ≈ 0.5% [26]). The low contrast leads to weak guiding and severe radiation loss occurs at
smaller curvatures, which makes dense and thus complex waveguide circuits unfeasible.

The work we present here makes use of an advanced dielectric waveguide platform involving
waveguide cores made from stoichiometric silicon nitride, embedded in a cladding made from
stoichiometric silicon oxide. Based on slow deposition at high temperatures (low-pressure
chemical vapor deposition), these waveguides offer a unique combination of high index contrast
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(∆n ∼ 18% [26]) and ultralow propagation loss (> 0.0004 dB/cm [27]). The platform thus
offers ideal preconditions for the realization of dense and low-loss photonics circuits, where
tuning-induced loss can be neglected.
In the following, we inspect the different degrees of complexity achievable with the named

photonic platforms. For a quantitative comparison, we estimate the maximum achievable
complexity with SOI, doped silica and Si3N4 in terms of a new figure of merit, Cf. We define
this figure as the maximum number of functional unit cells, n2, that can be arranged in a 2D
square mesh, before the intensity of the light has dropped to a fraction f. For convenience and
definiteness, we proceed with a specific value for this fraction, f = e−1; however, any other value
can be selected as desired.
Next, for comparing universal photonic processors, we define a prototype waveguide circuit

as unit cell, with many unit cells forming the processor. As has been shown, all unitary
transformations can be implemented using a network of unit cells that can perform two essential
functions, tunable beam splitting followed by tunable phase shifting [49].
The most basic functional design of such a unit cell in the form of a 2D waveguide circuit

is displayed in Fig. 7. We consider the beam splitter realized with two directional couplers in
the form of a Mach-Zehnder interferometer (MZI) where the splitting ratio can be tuned via a
phase shifter in one of the interferometer arms. An additional phase shifter in one of the output
waveguides allows tuning of the relative phase between the two outputs of the MZI. The optical
loss caused by a single unit cell depends on some basic geometrical parameters, specifically, the
propagation length through straight waveguide sections where phase tuning is provided, Lt, and
the propagation length through sections that are bent with a certain radius R, Lb = 4πR.

Fig. 7. Schematic of a universal linear optical network. The unit cell (dashed frame)
comprises a tunable beam splitter in the form of a tunable Mach-Zehnder interferometer
with two directional couplers and a phase shifter in one arm of length Lt (red), followed by
an external phase shifter (Lt, red). The path length through the unit cell is determined by
the length of the straight-waveguide tunable elements and the length of curved waveguides
(radius of curvature R).

The optical loss associatedwith the various waveguide sections depend on the chosenwaveguide
platform as described above and on the chosen core cross section of the waveguides. The latter
dependence means that the intrinsically lowest-loss of a specified circuit fabricated with a
given material platform can only be approached by a variation of the core cross section along
propagation. Specifically, for each waveguide section depending on its curvature, a different
cross section has to be chosen that minimizes the propagation loss. In section A.4 we describe
how we have obtained for each of the three platforms an empiric relation between the waveguide
bending radius and the minimum achievable power loss constant, αb(R), specified in unit of
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dB/m. Having defined a waveguide circuitry for the unit cell of a photonic processor in terms of
waveguide lengths and curvatures then allows to estimate the number of unit cells to be passed
before the specified loss fraction, f, is reached.
When analyzing the generic unit cell shown in Fig. 7, its path length, over which light

propagates, is Luc = Lb + 2Lt. Here we have assumed for simplicity that the circuit makes use of
90°-bends and that the length of the directional couplers can be neglected compared to the length
of tunable and other straight sections.

The number of unit cells, n, that can be coupled in series until the power transmission is reduced
to e−1 is found by solving the following equation Tn = exp[−(n · α · L · ln(10))/10] = e−1 for n.
In this expression α specifies the power loss for the sections with straight-propagation, with
phase-tuning and for bent waveguide sections, respectively αs, αt and αb, and where Ls, Lt,
and Lb are the according lengths of the sections. The total propagation losses are thus given
by α · L = αs · Luc + αb · Lb + αt · (2Lt). The number of unit cells that can be arranged in a 2D
square mesh obeying the same loss condition, i.e., the figure of merit for maximum functional
complexity, becomes Cf = n2 = (10/(α · Luc · ln(10)))2.
In Fig. 8 we plot the functional complexity Cf for a 2D mesh versus the bending radius,

calculated for different material platforms (different colors). The values used as loss coefficients,
αs, αt and αb and the length of the tunable element are summarized in Table 1 (the coefficients
summarize previous experimental data as described in section A.4).

Fig. 8. Functional complexity calculated for three different platforms: silicon nitride (red
curve), SOI (blue) and doped silica (green). The highest functional complexity achieved in
previous work is indicated as data points, i.e., [1,46] realized in SOI, [17] in doped silica
and this work realized with silicon nitride.

It can be seen that silicon nitride provides a functional complexity that is almost four orders of
magnitude higher than that of SOI and 1.5 to 3 orders higher than that of silica, depending on the
bending radii considered. The much higher propagation loss of SOI is mainly introduced by the
tuning via carrier injection [67], even if Lt can be held much shorter than in Si3N4. With regard
to doped silica, the higher functional complexity of silicon nitride is due to its substantially lower
bending loss. In order to identify and quantify possible room for improvements we compare three
recently published realizations, i.e., [1,17,46] and this work, all of them describing on-chip linear
optical networks (see data points in Fig. 8). The highest complexity of current SOI processors
is close to the maximum possible and that of silica can be improved by up to two orders of
magnitude with smaller radii of curvature. The largest room for improvement is expected for
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Si3N4. Although the complexity of Si3N4 is leading already by one order of magnitude, more
than three orders of magnitude seem possible.

Table 1. Parameters used for the functional complexity calculation.

Straight-propagation loss
αs[dB/m]

Bending loss
αb[dB/m]

Phase-tuning loss
αt[dB/m]

Tunable elements
length Lt[mm]

SOI 2.7 [69] 4.07 · R−0.62 3700 [67] 0.0616 [67]

Si3N4 0.045 [27] 0.316 · R−0.95 0 12 [70]

Doped Silica 0.01 [71] 7.24 · R−0.74 0 5 [72]

*The dependence of bending loss vs. waveguide curvature radius is obtained as described in section A.4.

A.2. Photonic processor

To ensure propagation losses of 0.2 dB/cm, a small footprint and single-mode propagation at
telecom C-band wavelengths (around 1550 nm) a double-stripe waveguide cross section is chosen
[33]. The total on-chip propagation losses are less than 40%, a value that corresponds to the
longest-possible on-chip geometrical path length (about 10 cm, along 15 tunable beam splitters).
An array of polarization-maintaining fibers is bonded to the chip to give optical access to the
waveguides. The processor is temperature-stabilized by a Peltier element and independent thermal
tuning of the 128 phase shifters is accomplished via USB-controlled drivers. The entire assembly
comprising the chip, fiber arrays and electronics, is packaged into a single portable case with a
USB connection and power socket at its back, and with 16 FC/PC fiber connectors at the front
panel. After transportation of the box from Twente to Oxford, there was no need for recalibrating
the tuning elements on chip, showing that the assembly is robust against vibrations and insensitive
to fluctuations in the environment temperature. After plugging in the single-photon source, the
experiments were carried out straightforwardly via computer control of the USB input.

A.3. High-dimensional single-photon quantum gates

Figure 9 shows the schematic of how to implement any integer power of a d-dimensional Pauli
X-gate with a d-dimensional linear optical network in Reck’s scheme [49] using d-dimensional
rail encoding. The linear optical network is described by the schematic in Fig. 9 where the
element ei, j indicates the tunable beam splitter at the ith row and jth column of the linear optical
network. The nth power of a d-dimensional X-gate, i.e., Xn, can be found by setting the reflectivity
of all the beam splitters ei, j to 1 (bar mode) and changing to 0 (cross mode) the reflectivity of the
elements up to the nth column and up to the ((d − n) + (j − 1))th row, for j = 1, . . . , n.

Fig. 9. Schematic of how to implement a d-dimensional X-gate on a d-dimensional linear
optical network.
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A.4. Derivation of loss coefficients

We recall that radiation loss occurs at all waveguide curvatures (bending loss). When keeping the
waveguide cross section constant along the propagation coordinate, the bending loss coefficient,
αb(R), increases exponentially with the inverse radius of curvature, R [73]. Using short bending
radii reduces the propagation length through bent waveguides, so the bending loss, reducing also
the area occupied by a circuit. For bent waveguides with increasing radius of curvature, the loss
levels off to the minimum value, αs, given by the straight-propagation loss, which is usually given
by material-intrinsic absorption and Rayleigh scattering.
Both the bending loss and straight-propagation loss are strongly dependent on the index

contrast between core and cladding as defined by the selected material platform, by the chosen
shape and size of the waveguide core. They depend also largely on the chosen fabrication
process. Generally, tightly confining the light to the core with high-contrast waveguides and
large, wavelength-sized cross sections, reduces the bending loss but simultaneously increases
the straight-propagation loss. Weak guiding on the other hand, as achieved with low index
contrast or a small (sub-wavelength) core size in high-contrast materials, can yield very low
straight-propagation loss; however, the bending loss becomes significant. In conclusion, the
overall loss in a circuit is minimized if the waveguide cross section is continuously adjusted to the
local curvature radius. This approach can be seen, e.g., in recent work with silicon waveguides
[73,74].

In order to analyze which waveguide platform offers highest component density until the power
transmission is reduced to e−1 we derive an empirical expression for the minimum value of αb(R)
vs the bending radius.

Figure 10 displays experimentally determined loss constants as reported for SOI, Si3N4 and
doped SiO2 (silica) waveguides vs the fabricated bending radius. Data published until 2014
are taken from [75] and more recent data from [74,76,77] and [1]. Although the loss values in
the named references show a significant variation, selecting only data points with the lowest
loss for each radius and platform yields clear trends. Specifically, the minimum reported loss
data vs waveguide bending radius shows that the lowest-loss values follow approximately an
inverse power law. To be noted is that there might be data points that deviates from the derived
power law, e.g., a loss value of ∼0.1 dB/m for a bending radius of ∼ 115 µm as reported in
[28] for Si3N4. However, these data points are exceptional and do not affect much the slope
of the derived power law curves. We note that this dependence was found approximately
also in numerical calculations when adjusting the width and height of rectangular waveguides
from silicon, Si3N4, and GeO2-doped silica waveguides [75]. Fitting inverse power laws to
the lowest-loss experimental data is thus consistent with the assumption that each lowest-loss
experimental observation was based on choosing an optimum waveguide cross section for the
corresponding bending radius. The coefficients extracted for each platform from the power-law
fits are listed in Table 1.
As reported above, with increasing radius of curvature, the value of αb(R) levels off to a

constant offset value, which is the minimum loss for straight waveguides αs. To indicate these
levels, we have drawn in Fig. 10 horizontal dashed and solid lines that pass through the lowest
reported experimental loss values (data points in the dashed frame taken from [27] for Si3N4,
from [69] for SOI and from [71] for doped silica). Adding the according loss constants, αs, to the
inverse power law functions then yield a closed expression for the expected minimum loss vs
bending radius (solid curves in Fig. 10).
Eventually, for a complete description of losses in tunable and programmable photonic

processors, also the loss in the phase-tunable sections of a waveguide circuit has to be quantified,
αt (which we term tunability-induced loss). For thermo-optic tuning using large-bandgap
dielectric materials, here doped silica and Si3N4, no additional losses are expected or have been
reported. To implement highly effective tuning in semiconductors within short propagation
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Fig. 10. Overview of planar waveguide propagation loss versus bending radius as in [63]
with more recent works [1,61,62,64]. The loss value for large radius tends to αs.

lengths, carrier injection can be applied, however, this increases the propagation loss through
free-carrier absorption [67]. For the waveguide cross sections to be used we assume standard
values, i.e., 220 nm thickness for SOI waveguides [69], and weakly guiding high-aspect ratio
waveguides for Si3N4 [27] and doped silica [78].
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