The current shift in the quantum optics community towards large-size
experiments -- with many modes and photons -- necessitates new classical
simulation techniques that go beyond the usual phase space formulation of
quantum mechanics. To address this pressing demand we formulate linear quantum
optics in the language of tensor network states. As a toy model, we extensively
analyze the quantum and classical correlations of time-bin interference in a
single fiber loop. We then generalize our results to more complex time-bin
quantum setups and identify different classes of architectures for
high-complexity and low-overhead boson sampling experiments