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It has recently been shown that optical parametric oscillator (OPO) Ising machines, consisting of
coupled optical pulses circulating in a cavity with parametric gain, can be used to probabilistically
find low-energy states of Ising spin systems. In this work, we study optical Ising machines that
operate under simplified Gaussian dynamics. We show that these dynamics are sufficient for reaching
probabilities of success comparable to previous work. Based on this result, we propose modified
optical Ising machines with simpler designs that do not use parametric gain yet achieve similar
performance, thus suggesting a route to building much larger systems.

INTRODUCTION

Combinatorial optimization problems, such as the
travelling salesman problem, appear in many disciplines
[1]. However, finding an optimal solution to combinato-
rial problems is a hard task for conventional computers.
Special-purpose hardware that can solve such problems
more efficiently than conventional computers is therefore
an active area of research. Examples include analog elec-
trical circuits [2, 3], molecular computing [4, 5], and more
recently adiabatic quantum computing [6, 7].

One combinatorial optimization problem of particular
note is the Ising problem [8]. The Ising problem, in the
absence of an external magnetic field, consists of find-
ing the configuration of a network of coupled spins that
minimizes the following Hamiltonian:

H = −
∑
i,j

Jijσiσj (1)

where σi and σj are the values of the spins of sites i and
j that can be either -1 or 1, and Jij is the (i, j) entry of
a matrix J describing the spin-spin couplings. The Ising
problem maps onto several physical and combinatorial
problems, such as the maximum cut problem [9]. It is
known to be NP-hard, but special-purpose hardware may
find solutions to the problem faster than conventional
computers.

Due to the high bandwidths available in optics, ded-
icated photonic-based technologies have been proposed
to accelerate several computational tasks. These tasks
include reservoir computing for speech recognition [10–
12] and classification tasks using support vector machines
[13]. Recently, it has also been suggested that an optical
setup, consisting of a train of coupled pulses undergo-
ing parametric amplification in a cavity, can be used to
find low-energy solutions of the Ising problem [14, 15].
In their final state, the pulses in this device oscillate as
optical parametric oscillators (OPOs) with either a 0 or
a π phase with respect to the pump light, and these two
phases can be used to encode up or down spin directions.

Coupling between pulses can be arranged in such a way
that the system preferentially oscillates in a configuration
that minimizes the Hamiltonian in equation 1.

This coupling can be achieved in an optical delay line
(ODL) architecture, where all the pulses coherently in-
terfere with each other. ODL Ising machines have been
experimentally demonstrated [16, 17], although with low
connectivity between the encoded spins. Increasing con-
nectivity and scale is an active area of research [18].
More recently, a new measurement and injection feedback
(MIF) scheme, that implements the required coupling us-
ing partial homodyne measurements and electronic feed-
back, was demonstrated with up to two thousand coupled
pulses [19, 20]. These devices were shown to outperform
several other combinatorial optimization algorithms; in
particular, Inagaki et al. [19] demonstrated that their
device could find a low energy configuration of a cou-
pled system of 2000 spins up to 50 times faster than a
conventional commercial computer.

In light of their experimental demonstrations of OPO
Ising machines, Inagaki et al. [19] and McMahon et al.
[20], raised interesting questions concerning the nature
and role of quantum features and thresholding behaviour
in the operation of their devices. Given the complex dy-
namics of the OPO and pump fields below and above
threshold, elucidating the relevant computational mech-
anisms presents challenges.

In this work we study MIF and ODL Ising machines
that operate with simplified dynamics described by the
Gaussian state formalism [21]. We show that these sim-
plified dynamics are sufficient to attain high success prob-
abilities similar to what has been experimentally demon-
strated. Based on these results, we propose simplifica-
tions to experimental realizations of these devices, which
we envisage will be of use to scaling them up to many
more coupled pulses.



2

FIG. 1. Overview of optical Ising machines. A) In measure-
ment and injection feedback Ising machines, in every loop
optical pulses undergo parametric amplification in a nonlin-
ear (χ2) material. A beam splitter (BS) picks off a fraction
of each pulse for measurement by homodyne detection. The
pulses are then displaced at a second BS by an amplitude de-
pendent on the measurement result. B) In the optical delay
line scheme, a part of each pulse is picked off into a delay
line (DL) and interfered with a consecutive pulse. With a
sufficient number of delay lines, every pulse can be made to
couple to every other pulse. C) In Gaussian optical Ising ma-
chines, the optical pulses are described by a multidimensional
Gaussian quasi-probability distribution in phase space, which
is completely determined by its mean (the displacement) and
by its covariance matrix.

THEORETICAL FRAMEWORK

Figure 1 provides an overview of the two different types
of optical Ising machines considered in this work. In both
cases, a train of pulses, initially in a vacuum state, circu-
lates in a fiber loop with parametric gain. These pulses
are coupled with each other via either MIF (Fig. 1a) or
ODL (Fig. 1b). In the MIF scheme, this coupling is pro-
duced by splitting off a fraction of each pulse, upon which
homodyne measurement is performed. Each pulse is then
displaced in phase space via optical feedback, with an
amplitude and phase determined by the collective mea-
surement results of all the other pulses. In the ODL
scheme, a fraction of each pulse is repeatedly picked off,
delayed, and then interfered with a consecutive pulse. In
both cases, the gain or the feedback is increased with
each round trip and the system settles into a final con-
figuration of steady state OPO pulses with well-defined
phases. The sign of the phases of the pulses can then be
measured and mapped onto spin orientations in an Ising
model, in which the spin-spin coupling is determined by
the optical coupling. The system preferentially settles
into a configuration that corresponds to a low energy in
the Ising model.

OPO Ising machines are usually described using the
stochastic master equation formalism [22, 23], which pro-
vides a picture of the interaction between the pump and

the signal both below and above threshold. In this work,
we consider optical Ising machines that are governed by
simplified dynamics described by the Gaussian state for-
malism [21]. The Gaussian state formalism applies to
optical states that have a Gaussian quasi-probability dis-
tribution in phase space, such as vacuum, coherent states,
and squeezed states. An N -mode Gaussian state is fully
described by its 2N × 2N covariance matrix M and 2N -
length displacement vector d that characterize the Gaus-
sian quasi-probability distribution. A Gaussian process
maps a Gaussian state to another Gaussian state, and is
described by simple matrix operations on the covariance
matrix and displacement vector.

We note that in OPO Ising machines, many physi-
cal processes are Gaussian processes. These include loss,
beam splitting, displacements, and homodyne detection.
Parametric amplification can also be approximated as a
Gaussian squeezing operation on the signal mode as long
as pump depletion is negligible, for example in an OPO
operated below threshold [24]. A non-Gaussian model is
necessary to account for the full interaction between the
pump and the signal; this interaction is not considered
in our work.

GAUSSIAN MEASUREMENT-FEEDBACK ISING
MACHINES

We simulate a Gaussian analogue of the MIF Ising ma-
chine demonstrated by McMahon et al. [20]. To provide
a comparison of our results to their work, we calculate
the success probabilities for finding the ground state en-
ergies of specific Ising systems, where the spin-spin cou-
plings are given by Möbius ladder graphs (see figure 2a).
The (i, j) entry of the J matrix corresponding to these
Möbius ladders is −1 if nodes i and j are connected in the
graph representing the Möbius ladder, and 0 otherwise.
McMahon et al. found that their experimental system
could find the correct ground state energy with a proba-
bility going from nearly 100% for small systems to about
20% for a 100-spin system.

Our simulation proceeds as follows. The pulses start
in a vacuum state. In every loop, each pulse undergoes
squeezing with a squeezing parameter of 0.2, followed
by 30% loss. We then pick off 10% of each pulse on a
beam splitter, on which we perform a simulated homo-
dyne measurement. This is done by randomly drawing
an array of numbers c from the marginal Gaussian prob-
ability distribution determined by the covariance matrix
and displacement vector of the measured light (see Meth-
ods). As described by McMahon et al. we then displace
the modes as follows:

d→ d + nηJc (2)

where n is the loop number and η = 0.001 is the feedback
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FIG. 2. Estimated probabilities of finding the correct ground
state energies for Möbius ladder graphs of different sizes. A)
Simulation of MIF Ising machines including squeezing (cir-
cles), without squeezing (triangles), and with saturated feed-
back (squares). The inset depicts a Möbius ladder graph. B)
Simulations of ODL Ising machines with squeezing (circles)
and a phase-insensitive gain medium (triangles). All error
bars indicate a a 95% confidence interval.

strength. With these parameters, the pump power is
initially roughly 25% below the oscillation threshold of
the system with η = 0, which is similar to what was used
in the experiment by McMahon et al. We note that when
η > 0, the feedback term in equation 2 brings the system
above threshold.

After 300 loops through the system, we take the sign of
the elements of d to be the orientation of the correspond-
ing spins, with which we calculate the energy of the spin
configuration using equation 1. We repeat this process
with graphs of up to 120 spins. The probabilities of find-
ing the correct result for these different sizes, estimated
from 300 trials for each size, are shown in figure 2a. We
find a probability greater than 50% of finding the correct
result for sizes up to about 90 spins.

The simulation above does not include gain satura-

FIG. 3. Histograms of the success probabilities for 50 ran-
domly selected cubic graphs with 16 spins, for a MIF Ising
machine with (left) and without (right) saturated feedback.
The probabilities are estimated from 100 simulation trials per
graph.

tion that would be present in a realistic machine, for
example due to pump depletion, which could affect the
success probability. To investigate the influence of satu-
ration, we repeat our MIF simulations with the feedback
displacement capped at 1000. In the case of a Möbius
ladder graph the performance is adversely affected (Fig.
2A). However, we find that the change in performance is
different for different graphs. Following McMahon et al.
[20], we calculate the success probability for 50 randomly
chosen 16-spin cubic graphs, for which each spin is con-
nected to exactly three others, using 100 trials per graph.
Figure 3 compares our results for a saturated and an un-
saturated MIF Ising machine. With saturation, low suc-
cess probabilities are not observed. However, not every
graph benefits. The success probability is only increased
in 29 out of 50 cases. We observe similar outcomes for
different values of the maximum feedback displacement,
ranging from 100 to 106.

GAUSSIAN OPTICAL DELAY LINE ISING
MACHINES

We also study a Gaussian analogue to ODL Ising ma-
chines. In our simulation, the pulses circulate around the
loop 100 times. In every round trip, each pulse under-
goes squeezing with a squeezing parameter of 0.2. Then,
for every pair of pulses (i, j), if Jij is −1, 10% of pulse
i is picked off on a beam splitter, given a π phase shift,
and interfered with pulse j on a 90:10 beam splitter. Af-
ter 100 round trips, we obtain a full description of the
final optical state in phase space within the Gaussian
state formalism. To simulate multiple experimental tri-
als, we perform 1000 homodyne measurements on this
state, from which we calculate an energy based on equa-
tion 1. We use these trials to estimate the probability of
success (Fig. 2b). We find a success probability greater
than 50% for sizes up to about 110 spins, which is similar
to what we found for the MIF scheme.
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INTERPRETATION

Our simulation of Gaussian MIF Ising machines can be
understood as implementing a classical discrete random
walk in optical phase space, in which the position of the
walker is specified by the displacement vector. Each step
taken by the walker is directed by the random outcome
of the homodyne measurement via the feedback. As the
feedback strength increases over time, the walker tends
to move towards a specific direction away from the ori-
gin. This direction corresponds to a spin configuration
which minimizes the Ising energy. This process is remi-
niscent of other Monte Carlo optimization schemes such
as simulated annealing [25], in which a classical random
walk probes parameter space.

In our simulation of Gaussian ODL Ising machines,
we deterministically generate a probability distribution
which is a multivariate Gaussian function. A specific
spin configuration is found by drawing a sample from this
distribution. This procedure is reminiscent of boson sam-
pling with Gaussian states and Gaussian measurements
[26].

We note that both types of devices considered in this
work can be efficiently emulated by classical computa-
tion. This can be seen as a consequence of the fact that
Gaussian optical Ising machines involve only Gaussian
measurements on Gaussian states [27].

SIMPLIFIED ISING MACHINES

The OPO Ising machines demonstrated by Inagaki et
al and McMahon et al can potentially scale up to tens
of thousands of coupled pulses [15]. Here we propose
simplified Ising machines that may provide a route to
building large scale devices.

We first consider a Gaussian MIF Ising machine in
which we simply remove the squeezing but maintain the
measurement and feedback. The pulses in the system
are therefore coherent states. In the absence of the gain
that previously partially compensated for the loss, we
double the feedback strength to η = 0.002. The random
walk process implemented by these simulations follows
the same pattern as in the simulation with parametric
gain, but random numbers are now drawn from a nar-
rower distribution around the average displacement due
to the absence of squeezing. Even though the phase
of a coherent state is not intrinsically bistable as for
OPOs, the use of measurement and injection that dis-
places along only one quadrature axis effectively makes
the phase bistable. Our simulation results are shown in
figure 2a. We find that removing the squeezing has only
minor influence on the success probability. We also find,
as in the case with squeezing, that the success probabil-
ities for different graphs can be modified by saturated
feedback.

Another alternative to an OPO-based MIF Ising ma-
chine involves the use of phase insensitive gain media
instead of parametric gain, as has been proposed [28].
Such a scheme would allow for tuning the uncertainty
on the quadratures of the pulses, thus adding an addi-
tional controllable degree of freedom to the random walk
implemented by MIF Ising machines.

We also simulate the Gaussian ODL Ising machine as
before, except the squeezing operation is replaced with
phase insensitive gain. We note that in this case, the
phases of the pulses are no longer bistable, but they
remain correlated due to their mutual couplings. Our
results are shown in figure 2B. The performance with
phase insensitive gain is essentially identical to that with
squeezing.

CONCLUSION

We introduce Gaussian optical Ising machines, and
find that Gaussian dynamics are sufficient for finding
low-energy solutions of the Ising problem, with perfor-
mance comparable to demonstrated OPO based ma-
chines. Based on this finding, we propose simplified
Gaussian approaches that suggest a route to developing
future large scale optical Ising machines. Following the
analyses by McMahon et al [20] and Inagaki et al [19]
that show that existing optical Ising machines can al-
ready outperform conventional commercial computers in
terms of computation time, we envisage that large scale
Gaussian optical Ising machines will be a useful and prac-
tical tool for solving difficult combinatorial optimization
problems.
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APPENDIX A

The following provides more detail as to how we im-
plemented our simulations using the Gaussian state for-
malism. In our simulations, we used the convention that
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the covariance matrix of vacuum is 1
21, but the following

formulae do not depend on the choice of convention.
Simulation of Squeezing and Loss.— Single mode

squeezing on mode i of a N -mode Gaussian state changes
its covariance matrix M and displacement vector d as
follows:

M→ SMST (3)

d→ Sd (4)

where S is unity except for entries 2i − 1 and 2i along
the diagonal which are equal to er, where r is the (real)
squeezing parameter.

Optical loss on mode i is modelled by a beam splitter
with transmission t acting between mode i and an ancilla
vacuum mode. This changes M and d as follows:

M→ TMTT + RVRT (5)

d→ Td (6)

where T is unity except for entries 2i − 1 and 2i along
the diagonal which are equal to

√
t, R is unity except for

entries 2i− 1 and 2i along the diagonal which are equal
to
√

1− t, and V is the covariance matrix for an N -mode
vacuum.

Simulation of Homodyne Measurements.— A homo-
dyne measurement on the N -th optical mode of an N -
mode Gaussian state described by covariance matrix M
and displacement vector d is simulated as follows. M
can be written in block-diagonal form:

(
A B

BT C

)
(7)

where C is the reduced 2 × 2 covariance matrix for the
homodyned mode, A is the reduced covariance matrix for
the remaining N−1 modes, and B keeps track of the cor-
relations between these modes. The homodyne measure-
ment projects mode N onto an infinitely squeezed state
with a displacement vector c, which is drawn from the
projection of the marginal Gaussian probability distribu-
tion described by C and d onto the chosen measurement
axis. The remaining N − 1 modes are then described by
a new covariance matrix A’ and displacement vector d’:

A’ = A−B(PCP)+BT (8)

d’ = dA + B(PCP)+(c− dC) (9)

where P is a projector onto the measured quadrature of
mode N , + denotes the Moore-Penrose pseudo-inverse,
and dA and dC are the original reduced displacement
vectors for the first N −1 modes and for the N -th mode,
respectively.

Simulation of Phase Insensitive Gain.— Phase-
insensitive gain on a given mode i of an N -mode state
can be modelled in the Gaussian state formalism by us-
ing an ancilla vacuum mode, implementing a two-mode
squeezing operation with squeezing parameter r on these
two modes, and tracing out the ancilla mode. In the
(x1, p1, ..., xN , pN ) basis in optical phase space, the co-
variance matrix M and the displacement vector d for
the amplified mode are thus transformed as follows:

M→ CMCT + SVST (10)

d→ Cd (11)

where C is unity except for entries 2i−1 and 2i along the
diagonal which are equal to cosh(r), S is unity except for
entries 2i−1 and 2i along the diagonal which are equal to
sinh(r), and V is the covariance matrix for an N -mode
vacuum. In our simulation of an ODL Ising machine with
phase-insensitive gain, we used a squeezing parameter of
r = 0.6, which yields an amount of gain cosh(r) ≈ 1.19
that is similar to the gain er1 ≈ 1.22 provided by single
mode squeezing with r1 = 0.2.

APPENDIX B

The following table contains the list of graphs that
were used to produce the histograms shown in figure 3,
along with the estimated probabilities of finding the cor-
responding ground state in a single run for both a satu-
rated and an unsaturated MIF Ising machine. The prob-
abilities were estimated from 100 runs for each graph.
The graphs are shown using the compact graph6 format,
in which each graph is represented by a string of ASCII
characters [29]. They are listed in increasing order of
their success probability for an unsaturated MIF Ising
machine.

Graph Without Saturation With Saturation
O}GWOKA?O@?C?E?E??o?J 0 0.84
O{O___GA?G?_?i?d?K_Ao 0 0.95
O{O_o_H@?G?O?U?G?Ag?Y 0.01 1
O{SoOKA?O@?D?C?C?@W?M 0.02 0.54
O}KGGGA?gA?G?I?D?@O?J 0.02 0.99
OsX@?gOA?K?S?O?G_BG?k 0.06 1
O{O_ogG@?C?H?K?G_B??J 0.07 0.99
OsX@?gOA?G?T?_?O_EO?q 0.18 0.38
OsX@?oO@GG?S?a?Q?AG?L 0.24 0.62
O{O_ooC@?D?G?H?D?AO?R 0.24 0.49
O{S__SC@?E?C?H?D?AG?T 0.27 0.98
O{O_o_G@?G?W?S?I_D??h 0.29 0.69
OsXP?_G@_C?K?Q?I?AG?L 0.32 0.76
O{O___IA?I?_?c?W?Ag?[ 0.34 0.86
O{O___IA_G?_?W?Q?Ag?[ 0.38 0.84
O}GOWOC?_A_G?J?G?AG?J 0.43 0.64
O{O___IA?G?_?s?R?D??h 0.45 0.69
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O{O___IA_G?_?R?O?EG?Y 0.45 1
O{O_o_G@OG?Q?O?J?CO?T 0.48 0.98
O{S__OE@?C_G?O?H?AW?[ 0.53 1
O{O_o_G@OG?O?Y?H?B??J 0.58 1
O{S__OE@?C_G?P?H?AG?T 0.61 1
OsX@GoO@?C_K?G?C_@O?J 0.65 1
OsX@?oO@GG?Q?a?O_CG?X 0.68 0.63
OsX_o_C?_B?G?G?D_A_?T 0.70 0.69
OsXP?_G@?C_O?X?Q?CG?h 0.74 0.97
O{S_gOC?_A?G?M?I?A_?J 0.76 0.69
O{O_ooE@?A?C?D?D?@O?R 0.77 0.75
O{O_o_G@OG?O?Y?K?@_?J 0.77 1
O}KGGGA?_B?G?K?D?@G?L 0.79 0.75
O{O_o_H@_G?H?G?D?@O?F 0.81 1
O}GOWSC?O@?C?E?C?@g?M 0.82 0.74
OsX_o_D?_A?C?E?D?@_?F 0.82 1
OsX_o_D?_A?C?D?C?@g?U 0.86 0.86
O}GOWSC?O@_C?C?A??w?M 0.88 0.81
O}GOOOC@?D?Q?W?Q?A_?F 0.89 0.82
O{O_ogG@?C?H?I?G_A_?b 0.90 0.80
O{S__OC@?E?S?Q?H?AO?b 0.92 0.84
O{O_ogG@?D?G?L?C?@G?J 0.93 0.99
O{S__OC@?D_O?W?P?A_?F 0.94 0.85
OsX@?gOAGK?S?O?C_@G?L 0.95 0.87
O{S__OF@?C?G?C?C_@o?Y 0.95 0.99
O{S_gOC?gA?G?I?D?@O?J 0.96 0.86
O{S__OE@?C?H?P?I?AO?b 0.97 0.90
OsXP?cG@GC?G?H?E?@_?F 0.98 0.84
O{S__OC@GE?P?O?G_AO?J 0.99 0.94
O{S__SC@?D?G?G?D_A_?T 0.99 0.92
O}GOWOC?_A?H?G?G_B_?e 1 1
O{O_ooE@?A?C?E?E??o?J 1 1
O{O___IA?K?_?T?O?DG?i 1 0.95
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