8 research outputs found

    Selective enrichment of founding reproductive microbiomes allows extensive vertical transmission in a fungus-farming termite

    Get PDF
    Mutualistic coevolution can be mediated by vertical transmission of symbionts between host generations. Termites host complex gut bacterial communities with evolutionary histories indicative of mixed-mode transmission. Here, we document that vertical transmission of gut bacterial strains is congruent across parent to offspring colonies in four pedigrees of the fungus-farming termite Macrotermes natalensis. We show that 44% of the offspring colony microbiome, including more than 80 bacterial genera and pedigree-specific strains, are consistently inherited. We go on to demonstrate that this is achieved because colony-founding reproductives are selectively enriched with a set of non-random, environmentally sensitive and termite-specific gut microbes from their colonies of origin. These symbionts transfer to offspring colony workers with high fidelity, after which priority effects appear to influence the composition of the establishing microbiome. Termite reproductives thus secure transmission of complex communities of specific, co-evolved microbes that are critical to their offspring colonies. Extensive yet imperfect inheritance implies that the maturing colony benefits from acquiring environmental microbes to complement combinations of termite, fungus and vertically transmitted microbes; a mode of transmission that is emerging as a prevailing strategy for hosts to assemble complex adaptive microbiomes. </p

    Resistance and Vulnerability of Honeybee (Apis mellifera) Gut Bacteria to Commonly Used Pesticides

    Get PDF
    Agricultural and apicultural practices expose honeybees to a range of pesticides that have the potential to negatively affect their physiology, neurobiology, and behavior. Accumulating evidence suggests that these effects extend to the honeybee gut microbiome, which serves important functions for honeybee health. Here we test the potential effects of the pesticides thiacloprid, acetamiprid, and oxalic acid on the gut microbiota of honeybees, first in direct in vitro inhibition assays and secondly in an in vivo caged bee experiment to test if exposure leads to gut microbiota community changes. We found that thiacloprid did not inhibit the honeybee core gut bacteria in vitro, nor did it affect overall community composition or richness in vivo. Acetamiprid did also not inhibit bacterial growth in vitro, but it did affect community structure within bees. The eight bacterial genera tested showed variable levels of susceptibility to oxalic acid in vitro. In vivo, treatment with this pesticide reduced amplicon sequence variant (ASV) richness and affected gut microbiome composition, with most marked impact on the common crop bacteria Lactobacillus kunkeei and the genus Bombella. We conducted network analyses which captured known associations between bacterial members and illustrated the sensitivity of the microbiome to environmental stressors. Our findings point to risks of honeybee exposure to oxalic acid, which has been deemed safe for use in treatment against Varroa mites in honeybee colonies, and we advocate for more extensive assessment of the long-term effects that it may have on honeybee health

    Sinotte supplement compressed.zip from Selective enrichment of founding reproductive microbiomes allows extensive vertical transmission in a fungus-farming termite

    No full text
    Mutualistic coevolution can be mediated by vertical transmission of symbionts between host generations. Termites host complex gut bacterial communities with evolutionary histories indicative of mixed-mode transmission. Here, we document that vertical transmission of gut bacterial strains is congruent across parent to offspring colonies in four pedigrees of the fungus-farming termite Macrotermes natalensis. We show that 44% of the offspring colony microbiome, including more than 80 bacterial genera and pedigree-specific strains, are consistently inherited. We go on to demonstrate that this is achieved because colony-founding reproductives are selectively enriched with a set of non-random, environmentally sensitive and termite-specific gut microbes from their colonies of origin. These symbionts transfer to offspring colony workers with high fidelity, after which priority effects may influence the composition of the establishing microbiome. Termite reproductives thus secure transmission of complex communities of specific, co-evolved microbes that are critical to their offspring colonies. Extensive yet imperfect inheritance implies that the maturing colony benefits from acquiring environmental microbes to complement combinations of termite, fungus and vertically transmitted microbes; a mode of transmission that is emerging as a prevailing strategy for hosts to assemble complex adaptive microbiomes

    Synergies Between Division of Labor and Gut Microbiomes of Social Insects

    Get PDF
    Social insects maximize resource acquisition and allocation through division of labor and associations with microbial symbionts. Colonies divide labor among castes and subcastes, where the plasticity of caste roles decreases in clades with higher social grades. Recent studies indicate that specific castes may also foster distinct gut microbiomes, suggesting synergies between division of labor and symbiosis. The social organization of a colony potentially partitions evolutionary persistent microbial partners to optimize symbioses and complement division of labor. However, research in this area has received limited attention. To elucidate if a structured microbiota is adaptive, we present three testable predictions to address consistent community structure, beneficial functions, and selection for microbiota that support caste roles. First, we posit that social insect groups spanning lower to higher social grades exhibit increasingly distinct caste microbiomes, suggesting that structured microbiomes may have evolved in parallel to social complexity. Second, we contend that the development of these microbiomes during colony maturation may clarify the extent to which they support division of labor. Third, we predict that mature social insect colonies with the most extreme division of labor demonstrate the strongest distinctions between caste microbiomes, carrying the greatest promise of insight into microbiome composition and function. Ultimately, we hypothesize that caste-specific microbiomes may enhance symbiotic benefits and the efficiency of division of labor, consequently maximizing fitness

    You don’t have the guts: a diverse set of fungi survive passage through Macrotermes bellicosus termite guts

    No full text
    Abstract Background Monoculture farming poses significant disease challenges, but fungus-farming termites are able to successfully keep their monoculture crop free from contamination by other fungi. It has been hypothesised that obligate gut passage of all plant substrate used to manure the fungal symbiont is key to accomplish this. Here we refute this hypothesis in the fungus-farming termite species Macrotermes bellicosus. Results We first used ITS amplicon sequencing to show that plant substrate foraged on by termite workers harbour diverse fungal communities, which potentially could challenge the farming symbiosis. Subsequently, we cultivated fungi from dissected sections of termite guts to show that fungal diversity does not decrease during gut passage. Therefore, we investigated if healthy combs harboured these undesirable fungal genera, and whether the presence of workers affected fungal diversity within combs. Removal of workers led to a surge in fungal diversity in combs, implying that termite defences must be responsible for the near-complete absence of other fungi in functioning termite gardens. Conclusions The rapid proliferation of some of these fungi when colonies are compromised indicates that some antagonists successfully employ a sit-and-wait strategy that allows them to remain dormant until conditions are favourable. Although this strategy requires potentially many years of waiting, it prevents these fungi from engaging in an evolutionary arms race with the termite host, which employs a series of complementary behavioural and chemical defences that may prove insurmountable

    The drivers of avian-haemosporidian prevalence in tropical lowland forests of New Guinea in three dimensions

    No full text
    Haemosporidians are among the most common parasites of birds and often negatively impact host fitness. A multitude of biotic and abiotic factors influence these associations, but the magnitude of these factors can differ by spatial scales (i.e., local, regional and global). Consequently, to better understand global and regional drivers of avian‐haemosporidian associations, it is key to investigate these associations at smaller (local) spatial scales. Thus, here, we explore the effect of abiotic variables (e.g., temperature, forest structure, and anthropogenic disturbances) on haemosporidian prevalence and host–parasite networks on a horizontal spatial scale, comparing four fragmented forests and five localities within a continuous forest in Papua New Guinea. Additionally, we investigate if prevalence and host–parasite networks differ between the canopy and the understory (vertical stratification) in one forest patch. We found that the majority of Haemosporidian infections were caused by the genus Haemoproteus and that avian‐haemosporidian networks were more specialized in continuous forests. At the community level, only forest greenness was negatively associated with Haemoproteus infections, while the effects of abiotic variables on parasite prevalence differed between bird species. Haemoproteus prevalence levels were significantly higher in the canopy, and an opposite trend was observed for Plasmodium. This implies that birds experience distinct parasite pressures depending on the stratum they inhabit, likely driven by vector community differences. These three‐dimensional spatial analyses of avian‐haemosporidians at horizontal and vertical scales suggest that the effect of abiotic variables on haemosporidian infections are species specific, so that factors influencing community‐level infections are primarily driven by host community composition

    Molecular detection and characterization of intestinal and blood parasites in wild chimpanzees (Pan troglodytes verus) in Senegal

    Get PDF
    Wild chimpanzee populations in West Africa (Pan troglodytes verus) have dramatically decreased as a direct consequence of anthropogenic activities and infectious diseases. Little information is currently available on the epidemiology, pathogenic significance, and zoonotic potential of protist species in wild chimpanzees. This study investigates the occurrence and genetic diversity of intestinal and blood protists as well as filariae in faecal samples (n = 234) from wild chimpanzees in the Dindefelo Community Nature Reserve, Senegal. PCR-based results revealed the presence of intestinal potential pathogens (Sarcocystis spp.: 11.5%; Giardia duodenalis: 2.1%; Cryptosporidium hominis: 0.9%), protist of uncertain pathogenicity (Blastocystis sp.: 5.6%), and commensal species (Entamoeba dispar: 18.4%; Troglodytella abrassarti: 5.6%). Entamoeba histolytica, Enterocytozoon bieneusi, and Balantioides coli were undetected. Blood protists including Plasmodium malariae (0.4%), Trypanosoma brucei (1.3%), and Mansonella perstans (9.8%) were also identified. Sanger sequencing analyses revealed host-adapted genetic variants within Blastocystis, but other parasitic pathogens (C. hominis, P. malariae, T. brucei, M. perstans) have zoonotic potential, suggesting that cross-species transmission between wild chimpanzees and humans is possible in areas where both species overlap. Additionally, we explored potential interactions between intestinal/blood protist species and seasonality and climate variables. Chimpanzees seem to play a more complex role on the epidemiology of pathogenic and commensal protist and nematode species than initially anticipated
    corecore