894 research outputs found
The State of the Circumstellar Medium Surrounding Gamma-Ray Burst Sources and its Effect on the Afterglow Appearance
We present a numerical investigation of the contribution of the presupernova
ejecta of Wolf-Rayet stars to the environment surrounding gamma-ray bursts
(GRBs), and describe how this external matter can affect the observable
afterglow characteristics. An implicit hydrodynamic calculation for massive
stellar evolution is used here to provide the inner boundary conditions for an
explicit hydrodynamical code to model the circumstellar gas dynamics. The
resulting properties of the circumstellar medium are then used to calculate the
deceleration of a relativistic, gas-dynamic jet and the corresponding afterglow
light curve produced as the shock wave propagates through the shocked-wind
medium. We find that variations in the stellar wind drive instabilities that
may produce radial filaments in the shocked-wind region. These comet-like tails
of clumps could give rise to strong temporal variations in the early afterglow
lightcurve. Afterglows may be expected to differ widely among themselves,
depending on the angular anisotropy of the jet and the properties of the
stellar progenitor; a wide diversity of behaviors may be the rule, rather than
the exception.Comment: 17 pages, 7 figures, ApJ in pres
Barriers and facilitators experienced in collaborative prospective research in orthopaedic oncology
Recerca col·laborativa; Grup focal; Oncologia ortopĂšdicaCollaborative research; Focus group; Orthopaedic oncologyInvestigaciĂłn colaborativa; Grupo focal; OncologĂa ortopĂ©dicaObjectives
As tumours of bone and soft tissue are rare, multicentre prospective collaboration is essential for meaningful research and evidence-based advances in patient care. The aim of this study was to identify barriers and facilitators encountered in large-scale collaborative research by orthopaedic oncological surgeons involved or interested in prospective multicentre collaboration.
Methods
All surgeons who were involved, or had expressed an interest, in the ongoing Prophylactic Antibiotic Regimens in Tumour Surgery (PARITY) trial were invited to participate in a focus group to discuss their experiences with collaborative research in this area. The discussion was digitally recorded, transcribed and anonymised. The transcript was analysed qualitatively, using an analytic approach which aims to organise the data in the language of the participants with little theoretical interpretation.
Results
The 13 surgeons who participated in the discussion represented orthopaedic oncology practices from seven countries (Argentina, Brazil, Italy, Spain, Denmark, United States and Canada). Four categories and associated themes emerged from the discussion: the need for collaboration in the field of orthopaedic oncology due to the rarity of the tumours and the need for high level evidence to guide treatment; motivational factors for participating in collaborative research including establishing proof of principle, learning opportunity, answering a relevant research question and being part of a collaborative research community; barriers to participation including funding, personal barriers, institutional barriers, trial barriers, and administrative barriers and facilitators for participation including institutional facilitators, leadership, authorship, trial set-up, and the support of centralised study coordination.
Conclusions
Orthopaedic surgeons involved in an ongoing international randomised controlled trial (RCT) were motivated by many factors to participate. There were a number of barriers to and facilitators for their participation. There was a collective sense of fatigue experienced in overcoming these barriers, which was mirrored by a strong collective sense of the importance of, and need for, collaborative research in this field. The experiences were described as essential educational first steps to advance collaborative studies in this area. Knowledge gained from this study will inform the development of future large-scale collaborative research projects in orthopaedic oncology
Bone Marrow Stem Cell Treatment for Ischemic Heart Disease in Patients with No Option of Revascularization: A Systematic Review and Meta-Analysis
PMCID: PMC3686792This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
The cursed duet today: Tuberculosis and HIV-coinfection
The tuberculosis (TB) and HIV syndemic continues to rage and are a major public health concern worldwide. This deadly association raises complexity and represent a significant barrier towards TB elimination. TB continues to be the leading cause of death amongst HIV-infected people. This paper reports the challenges that lay ahead and outlines some of the current and future strategies that may be able to address this co-epidemic efficiently. Improved diagnostics, cheaper and more effective drugs, shorter treatment regimens for both drug-sensitive and drug-resistant TB are discussed. Also, special topics on drug interactions, TB-IRIS and TB relapse are also described. Notwithstanding the defeats and meagre investments, diagnosis and management of the two diseases have seen significant and unexpected improvements of late. On the HIV side, expansion of ART coverage, development of new updated guidelines aimed at the universal treatment of those infected, and the increasing availability of newer, more efficacious and less toxic drugs are an essential element to controlling the two epidemics. On the TB side, diagnosis of MDR-TB is becoming easier and faster thanks to the new PCR-based technologies, new anti-TB drugs active against both sensitive and resistant strains (i.e. bedaquiline and delamanid) have been developed and a few more are in the pipeline, new regimens (cheaper, shorter and/or more effective) have been introduced (such as the âBangladesh regimenâ) or are being tested for MDR-TB and drug-sensitive-TB. However, still more resources will be required to implement an integrated approach, install new diagnostic tests, and develop simpler and shorter treatment regimens
Gray platelet syndrome: proinflammatory megakaryocytes and α-granule loss cause myelofibrosis and confer metastasis resistance in mice.
NBEAL2 encodes a multidomain scaffolding protein with a putative role in granule ontogeny in human platelets. Mutations in NBEAL2 underlie gray platelet syndrome (GPS), a rare inherited bleeding disorder characterized by a lack of α-granules within blood platelets and progressive bone marrow fibrosis. We present here a novel Nbeal2(-/-) murine model of GPS and demonstrate that the lack of α-granules is due to their loss from platelets/mature megakaryocytes (MKs), and not by initial impaired formation. We show that the lack of Nbeal2 confers a proinflammatory phenotype to the bone marrow MKs, which in combination with the loss of proteins from α-granules drives the development of bone marrow fibrosis. In addition, we demonstrate that α-granule deficiency impairs platelet function beyond their purely hemostatic role and that Nbeal2 deficiency has a protective effect against cancer metastasis.This work was funded by the British Heart
Foundation to CG (FS09/039) and WHO and AR (RG/09/12/28096); NHSBT to CB and HM;
Wellcome Trust (WT098051) to ZM, ELC, JE, HWJ and AOS.This is the accepted manuscript. The final published version is available from Blood at http://www.bloodjournal.org/content/early/2014/09/25/blood-2014-04-566760
The MURAVES Experiment: A Study of the Vesuvius Great Cone with Muon Radiography
The MURAVES experiment aims at the muographic imaging of the internal structure of the summit of Mt.
Vesuvius, exploiting muons produced by cosmic rays. Though presently quiescent, the volcano carries a
dramatic hazard in its highly populated surroundings. The challenging measurement of the rock density
distribution in its summit by muography, in conjunction with data from other geophysical techniques, can
help the modeling of possible eruptive dynamics. The MURAVES apparatus consists of an array of three
independent and identical muon trackers, with a total sensitive area of 3 square meters. In each tracker, a
sequence of 4 XY tracking planes made of plastic scintillators is complemented by a 60 cm thick lead wall
inserted between the two downstream planes to improve rejection of background from low-energy muons.
The apparatus is currently acquiring data. Preliminary results from the analysis of the first data sample are
presented
Alterations in the gut microbiota contribute to cognitive impairment induced by the ketogenic diet and hypoxia
Many genetic and environmental factors increase susceptibility to cognitive impairment (CI), and the gut microbiome is increasingly implicated. However, the identity of gut microbes associated with CI risk, their effects on CI, and their mechanisms remain unclear. Here, we show that a carbohydrate-restricted (ketogenic) diet potentiates CI induced by intermittent hypoxia in mice and alters the gut microbiota. Depleting the microbiome reduces CI, whereas transplantation of the risk-associated microbiome or monocolonization with Bilophila wadsworthia confers CI in mice fed a standard diet. B. wadsworthia and the risk-associated microbiome disrupt hippocampal synaptic plasticity, neurogenesis, and gene expression. The CI is associated with microbiome-dependent increases in intestinal interferon-gamma (IFNg)-producing Th1 cells. Inhibiting Th1 cell development abrogates the adverse effects of both B. wadsworthia and environmental risk factors on CI. Together, these findings identify select gut bacteria that contribute to environmental risk for CI in mice by promoting inflammation and hippocampal dysfunction
- âŠ