22 research outputs found

    Object-Based Image Analysis approach for vessel detection on optical and radar images

    No full text
    Commercial satellites for Earth observation can integrate conventional positioning and tracking systems for monitoring legal and illegal activities by sea, in order to effectively detect and prevent events threatening human life and environment. This study describes an object-oriented approach to detect vessels combining high- and medium-resolution optical and radar images. Once detected, the algorithm estimates their position, length, and heading and assigns a speed range. Tests are done using WorldView-2, QuickBird, GeoEye-1, Sentinel-2A, COSMO-SkyMed, and Sentinel-1 data imaged in several test sites including China, Australia, Italy, Hong Kong, and the western Mediterranean Sea. Validation of results with data from the automatic identification system shows that the estimates for length and heading have R2 ¼ 0.85 and R2 ¼ 0.92, respectively. Tests for evaluating speed from Sentinel-2 time-lag image displacement show encouraging results, with 70% of estimates’ residuals within 2 m∕s. Finally, our method is compared to the state-of-the-art search for unidentified maritime object (SUMO), provided by the European Commission’s Joint Research Centre. Finally, our method is compared to the state-of-the-art SUMO. Tests with Sentinel-1 data show similar results in terms of correct detections. Nevertheless, our method returns a smaller number of false alarms compared to SUMO

    A distributional multivariate approach for assessing performance of climate-hydrology models

    Get PDF
    Abstract One of the ultimate goals of climate studies is to provide projections of future scenarios: for this purpose, sophisticated models are conceived, involving lots of parameters calibrated via observed data. The outputs of such models are used to investigate the impacts on related phenomena such as floods, droughts, etc. To evaluate the performance of such models, statistics like moments/quantiles are used, and comparisons with historical data are carried out. However, this may not be enough: correct estimates of some moments/quantiles do not imply that the probability distributions of observed and simulated data match. In this work, a distributional multivariate approach is outlined, also accounting for the fact that climate variables are often dependent. Suitable statistical tests are described, providing a non-parametric assessment exploiting the Copula Theory. These procedures allow to understand (i) whether the models are able to reproduce the distributional features of the observations, and (ii) how the models perform (e.g., in terms of future climate projections and changes). The proposed methodological approach is appropriate also in contexts different from climate studies, to evaluate the performance of any model of interest: methods to check a model per se are sketched out, investigating whether its outcomes are (statistically) consistent

    Assessment of possible impacts of climate change on the hydrological regimes of different regions in China

    No full text
    The aim of this work is to investigate the soil water budget across China by means of hydrological modeling under current and future climate conditions and to evaluate the sensitivity to soil parameters. For this purpose, observed precipitation and temperature data (1981–2010) and climate simulations (2021–2050, 2071–2100) at high resolution (about 14 km) on a large part of China are used as weather forcing. The simulated weather forcing has been bias corrected by means of the distribution derived quantile mapping method to eliminate the effects of systematic biases in current climate modeling on water cycle components. As hydrological models, two 1D models are tested: TERRA-ML and HELP. Concerning soil properties, two datasets, provided respectively by Food and Agriculture Organization and U.S. Department of Agriculture, are separately tested. The combination of two hydrological models, two soil parameter datasets and three weather forcing inputs (observations, raw and bias corrected climate simulations) results in five different simulation chains. The study highlights how the choice of some approaches or soil parameterizations can affect the results both in absolute and in relative terms and how these differences could be highly related to weather forcing in inputs or investigated soil. The analyses point out a decrease in average water content in the shallower part of the soil with different extents according to climate zone, concentration scenario and soil/cover features. Moreover, the projected increase in temperature and then in evapotranspirative demand do not ever result in higher actual evapotranspiration values, due to the concurrent variations in precipitation patterns

    Assessment of possible impacts of climate change on the hydrological regimes of different regions in China

    No full text
    The aim of this work is to investigate the soil water budget across China by means of hydrological modeling under current and future climate conditions and to evaluate the sensitivity to soil parameters. For this purpose, observed precipitation and temperature data (1981–2010) and climate simulations (2021–2050, 2071–2100) at high resolution (about 14 km) on a large part of China are used as weather forcing. The simulated weather forcing has been bias corrected by means of the distribution derived quantile mapping method to eliminate the effects of systematic biases in current climate modeling on water cycle components. As hydrological models, two 1D models are tested: TERRA-ML and HELP. Concerning soil properties, two datasets, provided respectively by Food and Agriculture Organization and U.S. Department of Agriculture, are separately tested. The combination of two hydrological models, two soil parameter datasets and three weather forcing inputs (observations, raw and bias corrected climate simulations) results in five different simulation chains. The study highlights how the choice of some approaches or soil parameterizations can affect the results both in absolute and in relative terms and how these differences could be highly related to weather forcing in inputs or investigated soil. The analyses point out a decrease in average water content in the shallower part of the soil with different extents according to climate zone, concentration scenario and soil/cover features. Moreover, the projected increase in temperature and then in evapotranspirative demand do not ever result in higher actual evapotranspiration values, due to the concurrent variations in precipitation patterns

    The biceps brachii role in the stabilization of the cross punch

    Get PDF
    Purpose: starting from an injury background, we assumed that the biceps brachii\u2019s activations could have an important role in upper limbs injury. In this work we analyzed whether different activations of the biceps brachii impact on the power transfer of the punch and how boxers of different skill levels activate the biceps brachii when deliver a punch according to their skill level and efficacy. Methods: we enrolled, basing on official rankings, 23 skilled (n=6) and unskilled boxers. Subjects were instructed to perform three cross punches directed to a fixed elastic target triggered by the coach whistling, and were monitored through a surface electromyography sensor (EMG) on the biceps brachii to estimate the muscular activation during the performance, and through an accelerometer placed inside the elastic impact target to estimate the impact energy. We analyzed the oscillatory content of the EMG signal in order to assess the muscular activation between skilled and unskilled boxers, and between weak and strong punches. Results: both skilled and unskilled boxers threw strong, medium and weak strikes. Skilled boxers performed better than unskilled boxers (47% vs 25% in the \u201cstrong punch\u201d category).The EMG analysis revealed a significant increase of lower and higher frequencies (2-4 Hz and 15-17 Hz) and a decrease on the medium frequencies (7-9 Hz) in the skilled boxers compared to the unskilled boxers in strong punches. Weak punches had a similar activation patterns in the two groups. Conclusions: our results support the hypothesis that skilled boxers adapt their activation pattern of the biceps to better stabilize the punch delivery (and thus increasing the transfer of force)

    Mitochondrial Dysfunction in Peripheral Blood Mononuclear Cells as Novel Diagnostic Tools for Non-Alcoholic Fatty Liver Disease: Visualizing Relationships with Known and Potential Disease Biomarkers

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is a health emergency worldwide due to its high prevalence and the lack of specific therapies. Noninvasive biomarkers supporting NAFLD diagnosis are urgently needed. Liver mitochondrial dysfunction is a central NAFLD pathomechanism that changes throughout disease progression. Blood-cell bioenergetics reflecting mitochondrial organ dysfunction is emerging for its potential applications in diagnostics. We measured real-time mitochondrial respirometry in peripheral blood mononuclear cells (PBMCs), anthropometric parameters, routine blood analytes, and circulating cytokines from a cohort of NAFLD patients (N = 19) and non-NAFLD control subjects (N = 18). PBMC basal respiration, ATP-linked respiration, maximal respiration, and spare respiratory capacity were significantly reduced in NAFLD compared to non-NAFLD cases. Correlation plots were applied to visualize relationships between known or potential NAFLD-related biomarkers, while non-parametric methods were applied to identify which biomarkers are NAFLD predictors. Basal and ATP-linked mitochondrial respiration were negatively correlated with triglycerides and fasting insulin levels and HOMA index. Maximal and spare respiratory capacity were negatively correlated with IL-6 levels. All the mitochondrial respiratory parameters were positively correlated with HDL-cholesterol level and negatively correlated with fatty liver index. We propose including blood cell respirometry in panels of NAFLD diagnostic biomarkers to monitor disease progression and the response to current and novel therapies, including mitochondrial-targeted ones
    corecore