28 research outputs found

    Physical methods for topical skin drug delivery: concepts and applications

    Get PDF
    Topical drug delivery is an interesting approach to treat skin diseases and to avoid pain and low patient compliance in cases where a systemic delivery is required. However, the stratum corneum, which is the outermost skin layer, strongly protects the body from the entrance of substances, especially those hydrophilic. In this context, different physical methods have been studied to overcome the stratum corneum barrier and facilitate penetration of drugs into or through the skin. Among them, iontophoresis, low-frequency ultrasound and microneedles have been widely employed for transdermal drug delivery. More recently, they are also studied to aid in the treatment of dermatological disorders, such as skin tumors and inflammation. Basically, iontophoresis refers to the movement of charged and non-charged hydrophilic molecules through the skin due to the application of a low constant electric current and the contributions of electromigration and electroosmosis. In low-frequency ultrasound, cavitation is the main mechanism for skin permeabilization that consists on the formation of microbubbles that disorganize the stratum corneum. Microneedles are microprojections, minimally invasive, that can be designed with different lengths, materials and geometry to increase skin permeability. In this review, concepts, mechanisms and applications of these three physical methods will be presented and discussed with focus on their use in dermatological treatments. Moreover, comparative studies using different physical methods will be presented and also some clinical perspectives will be addressed

    Influence of ceramide 2 on in vitro skin permeation and retention of 5-ALA and its ester derivatives, for Photodynamic Therapy

    Get PDF
    Photodynamic therapy (PDT) based on topical 5-aminolevulinic acid (5-ALA), an endogenous precursor of protoporphyrin, is an interesting approach for the treatment of skin cancer. However, 5-ALA is a hydrophilic molecule and such a characteristic limits its appropriate cutaneous penetration and retention. In this way, more lipophilic molecules, such as esterified 5-ALA derivatives, have been under investigation in order to improve the skin penetration of this molecule. Drug formulation can also alter 5-ALA skin penetration. Therefore, the aim of this work was to study the influence of ceramide 2 - the main lipid of the SC- on the cutaneous delivery of 5-ALA and its ester derivatives in vitro, using Franz diffusion cell. The skin permeation of all studied drugs was decreased in the presence of ceramide, representing a desirable characteristic in order to avoid the risk of systemic side effects. Nevertheless, the SC and [epidermis + dermis] retention after 16 h has also been decreased in the presence of ceramide, as compared to control. In conclusion, ceramide was not a good adjuvant, meaning that research of other vehicles could be useful to improve cutaneous delivery of 5-ALA.A Terapia Fotodinâmica (TFD) tópica com um precursor das porfirinas endógenas, o ácido 5-aminolevulínico (5-ALA), constitui uma nova modalidade para o tratamento do câncer de pele. Entretanto, o 5-ALA é uma molécula hidrofílica, o que limita sua penetração e retenção cutânea apropriadas. Moléculas mais lipofílicas, tais como derivados esterificados do 5-ALA, estão sob intensa investigação para melhorar a penetração cutânea desta molécula. A formulação que contém o fármaco também pode alterar a penetração cutânea do 5-ALA. Desta forma, o objetivo deste trabalho foi estudar a influência da ceramida 2 - o principal lipídeo do EC- sobre a penetração cutânea de 5-ALA e seus derivados esterificados usando células de difusão de Franz. A permeação de todas as drogas estudadas através da pele foi diminuída na presença de ceramida, o que é desejável, evitando riscos de efeitos colaterais sistêmicos. Entretanto, a retenção no EC e [epiderme + derme] também foi diminuída na presença da ceramida, após 16 horas, comparado ao controle. Concluindo, a ceramida não foi um bom adjuvante, sendo necessária a pesquisa de outros veículos para melhorar a liberação cutânea do 5-ALA.FAPES

    Physical methods for topical skin drug delivery: concepts and applications

    Get PDF
    Topical drug delivery is an interesting approach to treat skin diseases and to avoid pain and low patient compliance in cases where a systemic delivery is required. However, the stratum corneum, which is the outermost skin layer, strongly protects the body from the entrance of substances, especially those hydrophilic. In this context, different physical methods have been studied to overcome the stratum corneum barrier and facilitate penetration of drugs into or through the skin. Among them, iontophoresis, low-frequency ultrasound and microneedles have been widely employed for transdermal drug delivery. More recently, they are also studied to aid in the treatment of dermatological disorders, such as skin tumors and inflammation. Basically, iontophoresis refers to the movement of charged and non-charged hydrophilic molecules through the skin due to the application of a low constant electric current and the contributions of electromigration and electroosmosis. In low-frequency ultrasound, cavitation is the main mechanism for skin permeabilization that consists on the formation of microbubbles that disorganize the stratum corneum. Microneedles are microprojections, minimally invasive, that can be designed with different lengths, materials and geometry to increase skin permeability. In this review, concepts, mechanisms and applications of these three physical methods will be presented and discussed with focus on their use in dermatological treatments. Moreover, comparative studies using different physical methods will be presented and also some clinical perspectives will be addressed

    Princípios básicos e aplicação da iontoforese na penetração cutânea de fármacos Basic principles and applications of iontophoresis for cutaneous penetration of drugs

    No full text
    <abstract language="eng">Physicochemical constraints severely limit the number of molecules that can be considered as candidates for transdermal delivery. Iontophoresis is a non-invasive technique in which a weak electric current is used to enhance the penetration of molecules into or through the skin. In this review the underlying mechanisms that drive iontophoresis and the impact of key experimental parameters - namely, formulation, drug concentration and pH - on iontophoretic delivery efficiency are discussed. In the final section some devices that are currently commercialized are also described

    Development of microemulsions to topically deliver 5-aminolevulinic acid in photodynamic therapy

    No full text
    The aim of this study was to obtain and to characterize microemulsions containing 5-aminolevulinic acid (5-ALA) and to investigate the influence of these systems in drug skin permeation for further topical photodynamic therapy (PDT). 5-ALA was incorporated in water-in-oil (W/O), bicontinuous (Bc), and oil-in-water (O/W) microemulsions obtained by the titration of ethyl oleate and PEG-8 caprylic/capric glycerides:polyglyceryl-6 dioleate (3:1) mixtures with water. Selected systems were characterized by conductivity, viscosity, size of the droplets, and drug release. The stability of the drug in the microemulsions was also assessed. Moreover, the in vitro and in vivo skin permeation of 5-ALA was investigated using diffusion cells and confocal scanning laser microscopy (CSLM), respectively. Despite the fact that the O/W microemulsion decreased the 5-ALA diffusion coefficient and retarded the drug release, it also significantly increased the in vitro drug skin permeation when compared to other 5-ALA carriers. It was observed by CSLM that the red fluorescence of the skin increased homogeneously in the deeper skin layers when the 5-ALA microemulsion was applied in vivo, probably due to the formation of the photoactive protoporphyrin IX. The microemulsion developed carried 5-ALA to the deeper skin layers, increasing the red fluorescence of the skin and indicating the potentiality of the system for topical 5-ALA-PDT. (C) 2010 Elsevier B.V. All rights reserved.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Brazil[05/01698-5]Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Brazil[04/05872-7]Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Brazil[04/09465-7

    The effects of pH and ionic strength on topical delivery of a negatively charged porphyrin (TPPS(4))

    No full text
    Meso-tetra-[4-sulfonatophenyl]-porphyrin (TPPS(4)) is a charged porphyrin derivate used in photodynamic therapy (PDT) by parenteral administration. This study means to investigate potential enhancement for its topical delivery by determining the TPPS(4) dependence on the environmental characteristics and applying iontophoresis. In order to accomplish this task, cathodal and anodal iontophoresis as well as passive delivery of the drug were studied in vitro and in vivo in function of its concentration, pH and ionic strength. A reduction in drug concentration as well as the NaCl elimination from donor formulation at pH 2.0 increased TPPS(4) passive permeation through the skin in vitro. Iontophoresis improved TPPS(4) delivery across the skin when applied in solutions containing NaCl at pH 2.0, regardless electrode polarity. However, at pH 7.4, the amount of TPPS(4) permeated by iontophoresis was not different from that one permeated after passive experiments from a solution containing NaCl. Despite the fact that iontophoresis did not improve TPPS(4) transdermal delivery at this specific condition, in vivo experiments showed that 10 min of iontophoresis quickly and homogeneously delivered TPPS(4) to deeper skin layers when compared to passive administration, which is an important condition for topical treatment of skin tumors with PDT. (C) 2008 Wiley-Liss, Inc. and the American Pharmacists Association

    Photodynamic therapy of skin cancer: controlled drug delivery of 5-ALA and its esters

    No full text
    Photodynamic therapy (PDT) is a tool for the treatment of certain cancerous and pre-cancerous conditions in dermatology. 5-Aminolevulinic acid (5-ALA) and simple derivatives thereof are the principal compounds used for this purpose. For optimal efficacy, the drug must be released at an appropriate rate from the formulation and penetrate the skin, ideally to reach the target tissue at a sufficiently high concentration. Because ALA is a polar, zwitterionic compound, its formulation in conventional topical vehicles, and its inherently poor skin permeability, poses important challenges for the pharmaceutical scientist. The synthesis of more lipophilic (e.g. ester) prodrugs of ALA resolves, in part, these issues but then demands that questions, related to biotransformation back to the parent 5-ALA and to stability, be addressed. The objective of this review, therefore, is to evaluate the state-of-the-art and identify those areas in which additional research is necessary

    Iontophoresis Improved Growth Reduction of Invasive Squamous Cell Carcinoma in Topical Photodynamic Therapy.

    No full text
    This study examined the potential of iontophoresis in topical photodynamic therapy (PDT) of human invasive squamous cells carcinomas (SCC). SCC was induced in nude BALB/c mice by subcutaneous injection of A431 cells. Tumor penetration and distribution of the photosensitizer tetrasulfonated zinc phthalocyanine (ZnPcS4) was investigated after 10 and 30 min of in vivo iontophoresis of a gel containing ZnPcS4. PDT was performed immediately after iontophoresis using laser at 660 nm with a dose of irradiation of 100 J/cm(2) and irradiance of 48 mW/cm(2) while tumor growth was measured for 30 days. Iontophoresis increased ZnPcS4 penetration into tumors by 6-fold after 30 min when compared with passive delivery. Confocal microscopy analysis showed that ZnPcS4 was homogeneous distributed within deep regions of the tumor after iontophoresis. Irradiation of the tumors immediately after iontophoresis showed reduction in tumor size by more than 2-fold when compared to non-treated tumors. Iontophoretic-PDT treated tumors presented large areas of necrosis. The study concluded that iontophoretic delivery of photosensitizers could be a valuable strategy for topical PDT of invasive SCC

    Optimization of aminolevulinic acid delivery by iontophoresis

    No full text
    The objective was to optimize aminolevulinic acid (ALA) electrotransport into and through the skin by adjustment of formulation composition and ionic strength. ALA delivery was investigated as a function of the polarity and concentrations of drug and background electrolyte in the donor solution. The anodal iontophoretic flux of ALA from a 10% solution was compared with the drug's passive flux from the same formulation to which 5% dimenthyl sulphoxide (DMSO) had been added. Iontophoresis of the predominantly zwitterionic ALA from the anode is more efficient than that from the cathode. It was possible, though, to increase the electrotransport of ALA by simultaneously delivering the drug from both anode and cathode. Reduction of NaCl concentration in the anode led to a 3- to 4-fold increase in ALA flux. Transport of ALA across the skin and the amount of prodrug delivered into the skin (SC and [epidermis+dermis]) were ~4-fold greater with iontophoresis as compared to the passive application of the DMSO formulation. In conclusion: (a) electroosmosis from the anode is enhanced when the background electrolyte concentration is lowered; and (b) low-level iontophoresis enhances ALA transport across and, more importantly, into the [epiderms+dermis] than a simple formulation incorporating DMSO
    corecore