45 research outputs found

    Pressure- and Temperature-Dependent Crystallization Kinetics of Isotactic Polypropylene under Process Relevant Conditions

    Get PDF
    In this study, a non-nucleated homopolymer (HP) and random copolymer (RACO), as well as a nucleated HP and heterophasic copolymer (HECO) were investigated regarding their crystallization kinetics. Using pvT-measurements and fast scanning chip calorimetry (FSC), the crystallization behavior was analyzed as a function of pressure, cooling rate and temperature. It is shown that pressure and cooling rate have an opposite influence on the crystallization temperature of the materials. Furthermore, the addition of nucleating agents to the material has a significant effect on the maximum cooling rate at which the formation of α-crystals is still possible. The non-nucleated HP and RACO materials show significant differences that can be related to the sterically hindering effect of the comonomer units of RACO on crystallization, while the nucleated materials HP and HECO show similar crystallization kinetics despite their different structures. The pressure-dependent shift factor of the crystallization temperature is independent of the material. The results contribute to the description of the relationship between the crystallization kinetics of the material and the process parameters influencing the injection-molding induced morphology. This is required to realize process control in injection molding in order to produce pre-defined morphologies and to design material properties

    Melt Crystallization of Poly(butylene 2,6-naphthalate)

    Get PDF
    Poly(butylene 2,6-naphthalate) (PBN) is a crystallizable linear polyester containing a rigid naphthalene unit and flexible methylene spacer in the chemical repeat unit. Polymeric materials made of PBN exhibit excellent anti-abrasion and low friction properties, superior chemical resistance, and outstanding gas barrier characteristics. Many of the properties rely on the presence of crystals and the formation of a semicrystalline morphology. To develop specific crystal structures and morphologies during cooling the melt, precise information about the melt-crystallization process is required. This review article summarizes the current knowledge about the temperature-controlled crystal polymorphism of PBN. At rather low supercooling of the melt, with decreasing crystallization temperature, ÎČ'- and α-crystals grow directly from the melt and organize in largely different spherulitic superstructures. Formation of α-crystals at high supercooling may also proceed via intermediate formation of a transient monotropic liquid crystalline structure, then yielding a non-spherulitic semicrystalline morphology. Crystallization of PBN is rather fast since its suppression requires cooling the melt at a rate higher than 6000 K·s−1. For this reason, investigation of the two-step crystallization process at low temperatures requires application of sophisticated experimental tools. These include temperature-resolved X-ray scattering techniques using fast detectors and synchrotron-based X-rays and fast scanning chip calorimetry. Fast scanning chip calorimetry allows freezing the transient liquid-crystalline structure before its conversion into α-crystals, by fast cooling to below its glass transition temperature. Subsequent analysis using polarized-light optical microscopy reveals its texture and X-ray scattering confirms the smectic arrangement of the mesogens. The combination of a large variety of experimental techniques allows obtaining a complete picture about crystallization of PBN in the entire range of melt-supercoolings down to the glass transition, including quantitative data about the crystallization kinetics, semicrystalline morphologies at the micrometer length scale, as well as nanoscale X-ray structure information

    Structure, Properties, and Release Kinetics of the Polymer/Insect Repellent System Poly (l-Lactic Acid)/Ethyl Butylacetylaminopropionate (PLLA/IR3535)

    Get PDF
    The insect repellent ethyl butylacetylaminopropionate (IR3535) was used as a functional additive for poly (l-lactic acid) (PLLA) to modify its structure and mechanical properties and achieve insect repellency. PLLA/IR3535 mixtures at various compositions were prepared via melt extrusion. In the analyzed composition range of 0 to 23 m% IR3535, PLLA and IR3535 were miscible at the length scale represented by the glass transition temperature. Addition of IR3535 resulted in a significant decrease in the glass transition temperature of PLLA, as well as in the elastic modulus, indicating its efficiency as a plasticizer. All mixtures were amorphous after extrusion, though PLLA/IR3535 extrudates with an IR3535 content between 18 and 23 m% crystallized during long-term storage at ambient temperature, due to their low glass transition temperature. Quantification of the release of IR3535 into the environment by thermogravimetric analysis at different temperatures between 50 and 100 °C allowed the estimation of the evaporation rate at lower temperatures, suggesting an extremely low release rate with a time constant of the order of magnitude of 1–2 years at body temperature

    Crystallization kinetics of polyamide 11 in the presence of sepiolite and montmorillonite nanofillers

    Get PDF
    The crystallization kinetics of polyamide 11 (PA 11) in presence of sepiolite and organomodified montmorillonite nanofillers has been studied in a wide range of temperatures and cooling rates by conventional differential scanning calorimetry (DSC) and fast scanning chip calorimetry (FSC). The presence of the nanofillers has a negligible effect on the crystallization temperature of PA 11 at low cooling rates. However, at rapid cooling conditions a distinct nucleating effect of the nanofillers is detected. The critical cooling rate to suppress crystallization increases from 600 K s–1 to about 1000 and 3000 K s–1 in nanocomposites containing sepiolite and montmorillonite, respectively. Regardless the cooling rate applied for solidification the melt, in the nanocomposites the crystallinity of PA 11 is 5 to 10 % higher than in neat PA 11, with the highest values obtained for the montmorillonite-containing system. The nucleating effect of the nanofillers onto the crystallization of the PA 11 is confirmed by analysis of the half-times of isothermal crystallization, and by analysis of the spherulitic superstructure. All measurements proved a saturation of the nucleation efficiency at a loading of the nanofiller of 2.5 m%.Deutsche Forschungsgemeinschaft (DFG) (Grant AN 212/18).http://link.springer.com/journal/3962017-07-31hb2016Chemical Engineerin

    Nucleation and crystallization in bio-based immiscible polyester blends

    Get PDF
    Bio-based thermoplastic polyesters are highly promising materials as they combine interesting thermal and physical properties and in many cases biodegradability. However, sometimes the best property balance can only be achieved by blending in order to improve barrier properties, biodegradability or mechanical properties. Nucleation, crystallization and morphology are key factors that can dominate all these properties in crystallizable biobased polyesters. Therefore, their understanding, prediction and tailoring is essential. In this work, after a brief introduction about immiscible polymer blends, we summarize the crystallization behavior of the most important bio-based (and immiscible) polyester blends, considering examples of double-crystalline components. Even though in some specific blends (e.g., polylactide/polycaprolactone) many efforts have been made to understand the influence of blending on the nucleation, crystallization and morphology of the parent components, there are still many points that have yet to be understood. In the case of other immiscible polyester blends systems, the literature is scarce, opening up opportunities in this environmentally important research topic.The authors would like to acknowledge funding by the BIODEST project ((RISE) H2020-MSCA-RISE-2017-778092

    A Study of Annealing of Poly(ethylene- c

    No full text
    corecore