1,574 research outputs found

    Significance of Task Significance in Online Marketplaces for Work

    Get PDF
    Online marketplaces for work like Amazon Mechanical Turk facilitate the sourcing of low expertise tasks in a fast and cost effective way. In this study, we explore the impact of task significance on work quality by informing workers of the purpose of the task and who benefits from it. Results from a laboratory experiment and a field experiment showed that perceived task significance improved work quality, but only for participants who recalled the purpose statement. In contrast, increasing monetary payment by 50% had no impact on work quality. A majority of participants who received the purpose statement were not able to recall it. Further analysis showed worker attributes such as English ability and personality traits influenced the likelihood of recall whereas rich media format had no effects. Overall, our work highlights the promise of task significance as a way to motivate online workers and the challenge of promoting task significance online

    Dynamical birefringence: Electron-hole recollisions as probes of Berry curvature

    Full text link
    The direct measurement of Berry phases is still a great challenge in condensed matter systems. The bottleneck has been the ability to adiabatically drive an electron coherently across a large portion of the Brillouin zone in a solid where the scattering is strong and complicated. We break through this bottleneck and show that high-order sideband generation (HSG) in semiconductors is intimately affected by Berry phases. Electron-hole recollisions and HSG occur when a near-band gap laser beam excites a semiconductor that is driven by sufficiently strong terahertz (THz)-frequency electric fields. We carried out experimental and theoretical studies of HSG from three GaAs/AlGaAs quantum wells. The observed HSG spectra contain sidebands up to the 90th order, to our knowledge the highest-order optical nonlinearity observed in solids. The highest-order sidebands are associated with electron-hole pairs driven coherently across roughly 10% of the Brillouin zone around the \Gamma point. The principal experimental claim is a dynamical birefringence: the sidebands, when the order is high enough (> 20), are usually stronger when the exciting near-infrared (NIR) and the THz electric fields are polarized perpendicular than parallel; the sideband intensities depend on the angles between the THz field and the crystal axes in samples with sufficiently weak quenched disorder; and the sidebands exhibit significant ellipticity that increases with increasing sideband order, despite nearly linear excitation and driving fields. We explain dynamical birefringence by generalizing the three-step model for high order harmonic generation. The hole accumulates Berry phases due to variation of its internal state as the quasi-momentum changes under the THz field. Dynamical birefringence arises from quantum interference between time-reversed pairs of electron-hole recollision pathways

    Regulation of Brain-Derived Neurotrophic Factor Exocytosis and Gamma-Aminobutyric Acidergic Interneuron Synapse by the Schizophrenia Susceptibility Gene Dysbindin-1

    Get PDF
    AbstractBackgroundGenetic variations in dystrobrevin binding protein 1 (DTNBP1 or dysbindin-1) have been implicated as risk factors in the pathogenesis of schizophrenia. The encoded protein dysbindin-1 functions in the regulation of synaptic activity and synapse development. Intriguingly, a loss of function mutation in Dtnbp1 in mice disrupted both glutamatergic and gamma-aminobutyric acidergic transmission in the cerebral cortex; pyramidal neurons displayed enhanced excitability due to reductions in inhibitory synaptic inputs. However, the mechanism by which reduced dysbindin-1 activity causes inhibitory synaptic deficits remains unknown.MethodsWe investigated the role of dysbindin-1 in the exocytosis of brain-derived neurotrophic factor (BDNF) from cortical excitatory neurons, organotypic brain slices, and acute slices from dysbindin-1 mutant mice and determined how this change in BDNF exocytosis transsynaptically affected the number of inhibitory synapses formed on excitatory neurons via whole-cell recordings, immunohistochemistry, and live-cell imaging using total internal reflection fluorescence microscopy.ResultsA decrease in dysbindin-1 reduces the exocytosis of BDNF from cortical excitatory neurons, and this reduction in BDNF exocytosis transsynaptically resulted in reduced inhibitory synapse numbers formed on excitatory neurons. Furthermore, application of exogenous BDNF rescued the inhibitory synaptic deficits caused by the reduced dysbindin-1 level in both cultured cortical neurons and slice cultures.ConclusionsTaken together, our results demonstrate that these two genes linked to risk for schizophrenia (BDNF and dysbindin-1) function together to regulate interneuron development and cortical network activity. This evidence supports the investigation of the association between dysbindin-1 and BDNF in humans with schizophrenia

    N-acetylcysteine decreases malignant characteristics of glioblastoma cells by inhibiting Notch2 signaling

    Get PDF
    Background: Glioblastomas multiforme (GBM) is the most devastating primary intracranial malignancy lacking effective clinical treatments. Notch2 has been established to be a prognostic marker and probably involved in GBM malignant progression. N-acetylcysteine (NAC), a precursor of intracellular glutathione (GSH), has been widely implicated in prevention and therapy of several cancers. However, the role of NAC in GBM remains unclear and the property of NAC independent of its antioxidation is largely unknown. Methods: The mRNA and protein levels of Notch family and other related factors were detected by RT-PCR and western blot, respectively. In addition, intracellular reactive oxygen species (ROS) was measured by flow cytometry-based DCFH-DA. Moreover, cell viability was assessed by CCK8 and cell cycle was analyzed by flow cytometry-based PI staining. The level of apoptosis was checked by flow cytometry-based Annexin V/PI. Cell migration and invasion were evaluated by wound healing and transwell invasion assays. At last, U87 Xenograft model was established to confirm whether NAC could restrain the growth of tumor. Results: Our data showed that NAC could decrease the protein level of Notch2. Meanwhile, NAC had a decreasing effect on the mRNA and protein levels of its downstream targets Hes1 and Hey1. These effects caused by NAC were independent of cellular GSH and ROS levels. The mechanism of NAC-mediated Notch2 reduction was elucidated by promoting Notch2 degradation through Itch-dependent lysosome pathway. Furthermore, NAC could prevent proliferation, migration, and invasion and might induce apoptosis in GBM cells via targeting Notch2. Significantly, NAC could suppress the growth of tumor in vivo. Conclusions: NAC could facilitate Notch2 degradation through lysosomal pathway in an antioxidant-independent manner, thus attenuating Notch2 malignant signaling in GBM cells. The remarkable ability of NAC to inhibit cancer cell proliferation and tumor growth may implicate a novel application of NAC on GBM therapy

    Physics of eccentric binary black hole mergers: A numerical relativity perspective

    Full text link
    Gravitational wave observations of eccentric binary black hole mergers will provide unequivocal evidence for the formation of these systems through dynamical assembly in dense stellar environments. The study of these astrophysically motivated sources is timely in view of electromagnetic observations, consistent with the existence of stellar mass black holes in the globular cluster M22 and in the Galactic center, and the proven detection capabilities of ground-based gravitational wave detectors. In order to get insights into the physics of these objects in the dynamical, strong-field gravity regime, we present a catalog of 89 numerical relativity waveforms that describe binary systems of non-spinning black holes with mass-ratios 1q101\leq q \leq 10, and initial eccentricities as high as e0=0.18e_0=0.18 fifteen cycles before merger. We use this catalog to quantify the loss of energy and angular momentum through gravitational radiation, and the astrophysical properties of the black hole remnant, including its final mass and spin, and recoil velocity. We discuss the implications of these results for gravitational wave source modeling, and the design of algorithms to search for and identify eccentric binary black hole mergers in realistic detection scenarios.Comment: 11 pages, 5 figures, 2 appendices. A visualization of this numerical relativity waveform catalog is available at https://gravity.ncsa.illinois.edu/products/outreach/; v2: 13 pages, 5 figures, calculations for angular momentum emission and recoil velocities are now included, references added. Accepted to Phys. Rev.

    A Minimal Fragment of MUC1 Mediates Growth of Cancer Cells

    Get PDF
    The MUC1 protein is aberrantly expressed on many solid tumor cancers. In contrast to its apical clustering on healthy epithelial cells, it is uniformly distributed over cancer cells. However, a mechanistic link between aberrant expression and cancer has remained elusive. Herein, we report that a membrane-bound MUC1 cleavage product, that we call MUC1*, is the predominant form of the protein on cultured cancer cells and on cancerous tissues. Further, we demonstrate that transfection of a minimal fragment of MUC1, MUC1*1110, containing a mere forty-five (45) amino acids of the extracellular domain, is sufficient to confer the oncogenic activities that were previously attributed to the full-length protein. By comparison of molecular weight and function, it appears that MUC1* and MUC1*1110 are approximately equivalent. Evidence is presented that strongly supports a mechanism whereby dimerization of the extracellular domain of MUC1* activates the MAP kinase signaling cascade and stimulates cell growth. These findings suggest methods to manipulate this growth mechanism for therapeutic interventions in cancer treatments
    corecore