13,184 research outputs found

    Current Dissipation in Thin Superconducting Wires: Accurate Numerical Evaluation Using the String Method

    Full text link
    Current dissipation in thin superconducting wires is numerically evaluated by using the string method, within the framework of time-dependent Ginzburg-Landau equation with a Langevin noise term. The most probable transition pathway between two neighboring current-carrying metastable states, continuously linking the Langer-Ambegaokar saddle-point state to a state in which the order parameter vanishes somewhere, is found numerically. We also give a numerically accurate algorithm to evaluate the prefactors for the rate of current-reducing transitions.Comment: 25 pages, 5 figure

    Mining frequent biological sequences based on bitmap without candidate sequence generation

    Get PDF
    Biological sequences carry a lot of important genetic information of organisms. Furthermore, there is an inheritance law related to protein function and structure which is useful for applications such as disease prediction. Frequent sequence mining is a core technique for association rule discovery, but existing algorithms suffer from low efficiency or poor error rate because biological sequences differ from general sequences with more characteristics. In this paper, an algorithm for mining Frequent Biological Sequence based on Bitmap, FBSB, is proposed. FBSB uses bitmaps as the simple data structure and transforms each row into a quicksort list QS-list for sequence growth. For the continuity and accuracy requirement of biological sequence mining, tested sequences used during the mining process of FBSB are real ones instead of generated candidates, and all the frequent sequences can be mined without any errors. Comparing with other algorithms, the experimental results show that FBSB can achieve a better performance on both run time and scalability

    Single item stochastic lot sizing problem considering capital flow and business overdraft

    Get PDF
    This paper introduces capital flow to the single item stochastic lot sizing problem. A retailer can leverage business overdraft to deal with unexpected capital shortage, but needs to pay interest if its available balance goes below zero. A stochastic dynamic programming model maximizing expected final capital increment is formulated to solve the problem to optimality. We then investigate the performance of four controlling policies: (R,QR, Q), (R,SR, S), (s,Ss, S) and (ss, Q‾\overline{Q}, SS); for these policies, we adopt simulation-genetic algorithm to obtain approximate values of the controlling parameters. Finally, a simulation-optimization heuristic is also employed to solve this problem. Computational comparisons among these approaches show that policy (s,S)(s, S) and policy (s,Q‾,S)(s, \overline{Q}, S) provide performance close to that of optimal solutions obtained by stochastic dynamic programming, while simulation-optimization heuristic offers advantages in terms of computational efficiency. Our numerical tests also show that capital availability as well as business overdraft interest rate can substantially affect the retailer's optimal lot sizing decisions.Comment: 18 pages, 3 figure

    ZOOpt: Toolbox for Derivative-Free Optimization

    Full text link
    Recent advances of derivative-free optimization allow efficient approximating the global optimal solutions of sophisticated functions, such as functions with many local optima, non-differentiable and non-continuous functions. This article describes the ZOOpt (https://github.com/eyounx/ZOOpt) toolbox that provides efficient derivative-free solvers and are designed easy to use. ZOOpt provides a Python package for single-thread optimization, and a light-weighted distributed version with the help of the Julia language for Python described functions. ZOOpt toolbox particularly focuses on optimization problems in machine learning, addressing high-dimensional, noisy, and large-scale problems. The toolbox is being maintained toward ready-to-use tool in real-world machine learning tasks

    Understanding Kernel Size in Blind Deconvolution

    Full text link
    Most blind deconvolution methods usually pre-define a large kernel size to guarantee the support domain. Blur kernel estimation error is likely to be introduced, yielding severe artifacts in deblurring results. In this paper, we first theoretically and experimentally analyze the mechanism to estimation error in oversized kernel, and show that it holds even on blurry images without noises. Then to suppress this adverse effect, we propose a low rank-based regularization on blur kernel to exploit the structural information in degraded kernels, by which larger-kernel effect can be effectively suppressed. And we propose an efficient optimization algorithm to solve it. Experimental results on benchmark datasets show that the proposed method is comparable with the state-of-the-arts by accordingly setting proper kernel size, and performs much better in handling larger-size kernels quantitatively and qualitatively. The deblurring results on real-world blurry images further validate the effectiveness of the proposed method.Comment: Accepted by WACV 201

    Subject-specific finite element modelling of the human hand complex : muscle-driven simulations and experimental validation

    Get PDF
    This paper aims to develop and validate a subject-specific framework for modelling the human hand. This was achieved by combining medical image-based finite element modelling, individualized muscle force and kinematic measurements. Firstly, a subject-specific human hand finite element (FE) model was developed. The geometries of the phalanges, carpal bones, wrist bones, ligaments, tendons, subcutaneous tissue and skin were all included. The material properties were derived from in-vivo and in-vitro experiment results available in the literature. The boundary and loading conditions were defined based on the kinematic data and muscle forces of a specific subject captured from the in-vivo grasping tests. The predicted contact pressure and contact area were in good agreement with the in-vivo test results of the same subject, with the relative errors for the contact pressures all being below 20%. Finally, sensitivity analysis was performed to investigate the effects of important modelling parameters on the predictions. The results showed that contact pressure and area were sensitive to the material properties and muscle forces. This FE human hand model can be used to make a detailed and quantitative evaluation into biomechanical and neurophysiological aspects of human hand contact during daily perception and manipulation. The findings can be applied to the design of the bionic hands or neuro-prosthetics in the future
    • …
    corecore