Based on the concept of constructive interference (CI), multiuser
interference (MUI) has recently been shown to be beneficial for communication
secrecy. A few CI-based secure precoding algorithms have been proposed that use
both the channel state information (CSI) and knowledge of the instantaneous
transmit symbols. In this paper, we examine the CI-based secure precoding
problem with a focus on smart eavesdroppers that exploit statistical
information gleaned from the precoded data for symbol detection. Moreover, the
impact of correlation between the main and eavesdropper channels is taken into
account. We first modify an existing CI-based preocding scheme to better
utilize the destructive impact of the interference. Then, we point out the
drawback of both the existing and the new modified CI-based precoders when
faced with a smart eavesdropper. To address this deficiency, we provide a
general principle for precoder design and then give two specific design
examples. Finally, the scenario where the eavesdropper's CSI is unavailable is
studied. Numerical results show that although our modified CI-based precoder
can achieve a better energy-secrecy trade-off than the existing approach, both
have a limited secrecy benefit. On the contrary, the precoders developed using
the new CI-design principle can achieve a much improved trade-off and
significantly degrade the eavesdropper's performance