research

ZOOpt: Toolbox for Derivative-Free Optimization

Abstract

Recent advances of derivative-free optimization allow efficient approximating the global optimal solutions of sophisticated functions, such as functions with many local optima, non-differentiable and non-continuous functions. This article describes the ZOOpt (https://github.com/eyounx/ZOOpt) toolbox that provides efficient derivative-free solvers and are designed easy to use. ZOOpt provides a Python package for single-thread optimization, and a light-weighted distributed version with the help of the Julia language for Python described functions. ZOOpt toolbox particularly focuses on optimization problems in machine learning, addressing high-dimensional, noisy, and large-scale problems. The toolbox is being maintained toward ready-to-use tool in real-world machine learning tasks

    Similar works

    Full text

    thumbnail-image

    Available Versions