64 research outputs found

    A new method to retrieve the real part of the equivalent refractive index of atmospheric aerosols

    Get PDF
    This document is the Accepted Manuscript version of the following article: S. Vratolis, et al, ‘A new method to retrieve the real part of the equivalent refractive index of atmospheric aerosols’, Journal of Aerosol Science, Vol. 117: 54-62, March 2018. Under embargo until 29 December 2019. The final, published version is available online at DOI: https://doi.org/10.1016/j.jaerosci.2017.12.013.In the context of the international experimental campaign Hygroscopic Aerosols to Cloud Droplets (HygrA-CD, 15 May to 22 June 2014), dry aerosol size distributions were measured at Demokritos station (DEM) using a Scanning Mobility Particle Sizer (SMPS) in the size range from 10 to 550 nm (electrical mobility diameter), and an Optical Particle Counter (OPC model Grimm 107 operating at the laser wavelength of 660 nm) to acquire the particle size distribution in the size range of 250 nm to 2.5 μm optical diameter. This work describes a method that was developed to align size distributions in the overlapping range of the SMPS and the OPC, thus allowing us to retrieve the real part of the aerosol equivalent refractive index (ERI). The objective is to show that size distribution data acquired at in situ measurement stations can provide an insight to the physical and chemical properties of aerosol particles, leading to better understanding of aerosol impact on human health and earth radiative balance. The resulting ERI could be used in radiative transfer models to assess aerosol forcing direct effect, as well as an index of aerosol chemical composition. To validate the method, a series of calibration experiments were performed using compounds with known refractive index (RI). This led to a corrected version of the ERI values, (ERICOR). The ERICOR values were subsequently compared to model estimates of RI values, based on measured PM2.5 chemical composition, and to aerosol RI retrieved values by inverted lidar measurements on selected days.Peer reviewe

    Optical-microphysical properties of Saharan dust aerosols and composition relationship using a multi-wavelength Raman lidar, in situ sensors and modelling: a case study analysis

    Get PDF
    A strong Saharan dust event that occurred over the city of Athens, Greece (37.9° N, 23.6° E) between 27 March and 3 April 2009 was followed by a synergy of three instruments: a 6-wavelength Raman lidar, a CIMEL sun-sky radiometer and the MODIS sensor. The BSC-DREAM model was used to forecast the dust event and to simulate the vertical profiles of the aerosol concentration. Due to mixture of dust particles with low clouds during most of the reported period, the dust event could be followed by the lidar only during the cloud-free day of 2 April 2009. The lidar data obtained were used to retrieve the vertical profile of the optical (extinction and backscatter coefficients) properties of aerosols in the troposphere. The aerosol optical depth (AOD) values derived from the CIMEL ranged from 0.33–0.91 (355 nm) to 0.18–0.60 (532 nm), while the lidar ratio (LR) values retrieved from the Raman lidar ranged within 75–100 sr (355 nm) and 45–75 sr (532 nm). Inside a selected dust layer region, between 1.8 and 3.5 km height, mean LR values were 83 ± 7 and 54 ± 7 sr, at 355 and 532 nm, respectively, while the Ångström-backscatter-related (ABR<sub>355/532</sub>) and Ångström-extinction-related (AER<sub>355/532</sub>) were found larger than 1 (1.17 ± 0.08 and 1.11 ± 0.02, respectively), indicating mixing of dust with other particles. Additionally, a retrieval technique representing dust as a mixture of spheres and spheroids was used to derive the mean aerosol microphysical properties (mean and effective radius, number, surface and volume density, and mean refractive index) inside the selected atmospheric layers. Thus, the mean value of the retrieved refractive index was found to be 1.49( ± 0.10) + 0.007( ± 0.007)i, and that of the effective radiuses was 0.30 ± 0.18 μm. The final data set of the aerosol optical and microphysical properties along with the water vapor profiles obtained by Raman lidar were incorporated into the ISORROPIA II model to provide a possible aerosol composition consistent with the retrieved refractive index values. Thus, the inferred chemical properties showed 12–40% of dust content, sulfate composition of 16–60%, and organic carbon content of 15–64%, indicating a possible mixing of dust with haze and smoke. PM<sub>10</sub> concentrations levels, PM<sub>10</sub> composition results and SEM-EDX (Scanning Electron Microscope-Energy Dispersive X-ray) analysis results on sizes and mineralogy of particles from samples during the Saharan dust transport event were used to evaluate the retrieval

    Determining the influence of different atmospheric circulation patterns on PM10 chemical composition in a source apportionment study

    Get PDF
    This study combines a set of chemometric analyses with a source apportionment model for discriminating the weather conditions, local processes and remote contributions having an impact on particulate matter levels and chemical composition. The proposed approach was tested on PM10 data collected in a semi-rural coastal site near Venice (Italy). The PM10 mass, elemental composition and the water soluble inorganic ions were quantified and seven sources were identified and apportioned using the positive matrix factorization: sea spray, aged sea salt, mineral dust, mixed combustions, road traffic, secondary sulfate and secondary nitrate. The influence of weather conditions on PM10 composition and its sources was investigated and the importance of air temperature and relative humidity on secondary components was evaluated. Samples collected in days with similar atmospheric circulation patterns were clustered on the basis of wind speed and direction. Significant differences in PM10 levels and chemical composition pointed out that the production of sea salt is strongly depending on the intensity of local winds. Differently, typical primary pollutants (i.e. from combustion and road traffic) increased during slow wind regimes. External contributions were also investigated by clustering the backward trajectories of air masses. The increase of combustion and traffic-related pollutants was observed when air masses originated from Central and Northwestern Europe and secondary sulfate was observed to rise when air masses had passed over the Po Valley. Conversely, anthropogenic contributions dropped when the origin was in the Mediterranean area and Northern Europe. The chemometric approach adopted can discriminate the role local and external sources play in determining the level and composition of airborne particulate matter and points out the weather circumstances favoring the worst pollution conditions. It may be of significant help in designing local and national air pollution control strategies

    Humic acids copper binding following their photochemical alteration by simulated solar light

    No full text

    PM10 composition during an intense Saharan dust transport event over Athens (Greece)

    No full text
    The influence of Saharan dust on the air quality of Southern European big cities became a priority during the last decade. The present study reports results on PM 10 monitored at an urban site at 14m above ground level during an intense Saharan dust transport event. The elemental composition was determined by Energy Dispersive X-ray Fluorescence Spectrometry (EDXRF) for 12 elements: Si, Al, Fe, K, Ca, Mg, Ti, S, Ni, Cu, Zn and Mn. PM 10 concentrations exceeded the EU limit (50μg/m 3) several times during the sampling period. Simultaneous maxima have been observed for the elements of crustal origin. The concentrations of all the elements presented a common maximum, corresponding to the date where the atmosphere was heavily charged with particulate matter permanently for an interval of about 10h. Sulfur and heavy metal concentrations were also associated to local emissions. Mineral dust represented the largest fraction of PM 10 reaching 79%. Seven days back trajectories have shown that the air masses arriving over Athens, originated from Western Sahara. Scanning Electron Microscopy coupled with Energy Dispersive X-ray analysis (SEM-EDX) revealed that particle agglomerates were abundant, most of them having sizes <2μm. Aluminosilicates were predominant in dust particles also rich in calcium which was distributed between calcite, dolomite, gypsum and Ca-Si particles. These results were consistent with the origin of the dust particles and the elemental composition results. Sulfur and heavy metals were associated to very fine particles <1μm

    Long-term variability of nutrients, major elements and trace metals above the Mediterranean

    Get PDF
    Conférence International MISTRALS. Environment in the Mediterranean Statements and Prospects for Research and Society, 20-22 October 2015, Villa Méditerranée, Marseille, France.-- 1 pagePeer Reviewe
    corecore