13 research outputs found

    Ion Chamber Collection Efficiencies for Proton Spot Scanning Calibration

    Full text link
    Charge accumulation was measured under calibration conditions in the spread-out Bragg peak (SOBP) using the calibration bias as well as a range of voltages from 10V to 500V and a Farmer-style ion chamber. Collection efficiency was determined by extrapolating to infinite voltage. Similar measurements were taken in an identical dose distribution with a much shorter spot duration. The impact of each of the three models on calibration was then quantified using the TRS-398 protocol. The collection efficiency for the standard calibration was determined to agree well with the prediction of a continuous beam recombination correction. The standard calibration field was found to persistently agree with a continuous beam recombination correction for much lower operating biases. The collection efficiency result for the short spot duration field did not agree with either the continuous or pulsed-beam correction. Using the incorrect recombination model under the standard calibration conditions resulted in a 0.5% calibration difference. We have determined that our spot scanning system would be most appropriately calibrated using a recombination correction with continuous beam model. Physicists responsible for the calibration of such systems are advised to take measurements described here to correctly identify the applicable recombination model for their clinics.Comment: Submitted December 16, 2015 to Medical Physic

    Design of the Small Angle Neutron Scattering instrument at the Indiana University Low Energy Neutron Source: Applications to the study of nanostructured materials

    No full text
    The Low Energy Neutron Source (LENS) located at the Indiana University Cyclotron Facility (IUCF) is a prototypical long-pulse accelerator-based neutron source. The Small Angle Neutron Scattering (SANS) instrument is one of several planned instruments at the LENS facility. The SANS instrument is a time-of-flight instrument which utilizes a pinhole collimation system and neutron wavelengths up to 20A giving it a q range from about 0.006Å-1 to 0.5Å-1 with a maximum divergence at the sample of about ±8mrad. The neutron flux on the sample at the anticipated 8kW mode of operation is anticipated to be greater than 2 × 104n/s.cm 2. The design, calibration, and testing of the LENS SANS instrument is discussed, including Monte-Carlo simulations and analytical calculations used to optimize the collimation design, the placement and design of the pulse-overlap chopper system, and other aspects of the instrument's geometry. The expected resolution, count rates, and other general performance parameters of the instrument are presented and, where possible, compared with experimental results. SANS measurements of a family of tripodal organo-silicon dendrimer molecules using the IPNS SAND and the NCNR NG3 SANS instruments are presented. Variations in the scattering curves are compared for solutions of the dendrimers at multiple concentrations in d-heptane, d-DCM, and d-toluene. Models of both the particle form factor and the structure factor are presented. The measurements suggest a distinct difference between the size and behavior of the highest generation dendrimer in two of the solvents (d-DCM and d-toluene) as compared to a third (d-heptane). Additionally, the dendrimer molecules appear to be forming short chains in solution. A brief study of iron oxide magnetic nanoparticles is also presented. This study includes a presentation of the magnetic measurements of the nanoparticles using a SQUID magnetometer. The measurements indicate contributions by a larger dispersion of magnetic moments than is explained by the size dispersion of the particles. SAXS measurements help to confirm that this apparent dispersion in the magnetic moments is likely the result of aggregation and associated magnetic coupling between particles as well as the formation of distinct spinel and wustite phases in the particles. SANS measurements of the particles using the NCNR NG3 SANS instrument are also presented

    Magnetic investigations of titanium-doped gamma iron oxides dispersed in polymers

    No full text
    The preparation and characterization of titanium-doped iron oxides–styrene isoprene styrene block copolymer composites is reported. The precursor, as-synthesized nanoparticles, contains akaganeite, maghemite, and titanium-doped maghemite. Hysteresis loops obtained by SQUID measurements revealed an exchange biased field assigned to the presence of akaganeite nanoparticles. It was found that the coercive field and the exchange bias field decreases as the temperature of the sample is increased. The temperature dependence of the magnetization revealed a blocking temperature of about 220 K. The ESR spectra in the temperature range 150 K to about 300 K are single broad resonance lines. It was observed that the resonance line position is strongly temperature dependent due to the combined action of the external and molecular magnetic fields. The decrease of the resonance line width as the temperature is increased is governed by the reorientation of the magnetization. Thermally activated movements of magnetic nanoparticles within the soft phase (polyisoprene) of the matrix may also contribute to resonance line narrowing

    Self-Assembled Virus-like Particles with Magnetic Cores. Nano Lett

    No full text
    Efficient encapsulation of functionalized spherical nanoparticles by viral protein cages was found to occur even if the nanoparticle is larger than the inner cavity of the native capsid. This result raises the intriguing possibility of reprogramming the self-assembly of viral structural proteins. The iron oxide nanotemplates used in this work are superparamagnetic, with a blocking temperature of about 250 K, making these virus-like particles interesting for applications such as magnetic resonance imaging and biomagnetic materials. Another novel feature of the virus-like particle assembly described in this work is the use of an anionic lipid micelle coat instead of a molecular layer covalently bound to the inorganic nanotemplate. Differences between the two functionalization strategies are discussed. A. Introduction. Magnetic nanoparticles (NPs) have re-ceived considerable attention due to the promise they bring in a wide variety of biomedical applications such as contrast enhancement agents for magnetic resonance imaging (MRI),1,2 bioprobes,3 cell sorters,4,5 etc. Usually, superparamagneti

    AAPM task group report 302 : Surface-guided radiotherapy

    No full text
    The clinical use of surface imaging has increased dramatically, with demonstrated utility for initial patient positioning, real-time motion monitoring, and beam gating in a variety of anatomical sites. The Therapy Physics Subcommittee and the Imaging for Treatment Verification Working Group of the American Association of Physicists in Medicine commissioned Task Group 302 to review the current clinical uses of surface imaging and emerging clinical applications. The specific charge of this task group was to provide technical guidelines for clinical indications of use for general positioning, breast deep-inspiration breath hold treatment, and frameless stereotactic radiosurgery. Additionally, the task group was charged with providing commissioning and on-going quality assurance (QA) requirements for surface-guided radiation therapy (SGRT) as part of a comprehensive QA program including risk assessment. Workflow considerations for other anatomic sites and for computed tomography simulation, including motion management, are also discussed. Finally, developing clinical applications, such as stereotactic body radiotherapy (SBRT) or proton radiotherapy, are presented. The recommendations made in this report, which are summarized at the end of the report, are applicable to all video-based SGRT systems available at the time of writing

    Magnetic nanoparticles with functional silanes: evolution of well-defined shells from anhydride containing silane

    No full text
    Modification of iron oxide nanoparticles (NPs) synthesized by high temperature solvothermal routes is carried out using two silanes: (i) N-(6-aminohexyl)-aminopropyltrimethoxysilane (AHAPS) where only one end of the molecule reacts with the surface Fe-OH groups and (ii) 3-(triethoxysilyl)propylsuccinic anhydride (SSA) where both ends are reactive with Fe-OH. Depending on the NP synthesis protocol, the amount of surface OH groups on the NPs may differ, however, for all the cases presented here, the comparatively low OH group density prevents a high density of AHAPS coverage, yielding NP aggregates instead of single particles in aqueous solutions. Alternatively, use of SSA containing two terminal functionalities, anhydride and siloxy, which are both reactive towards the NP surface, results in the formation of discrete dense polymeric shells, providing stability of individual NPs in water. The mechanism of the SSA shell formation is discussed. The evolution of the chemical transformations leads to shells of different thickness and density, yet this evolution can be halted by hydrolysis, after which the NPs are water soluble, negatively charged and exhibit excellent stability in aqueous media
    corecore