18 research outputs found

    Whole-blood transcriptomic signatures induced during immunization by chloroquine prophylaxis and Plasmodium falciparum sporozoites

    Get PDF
    A highly effective vaccine that confers sterile protection to malaria is urgently needed. Immunization under chemoprophylaxis with sporozoites (CPS) consistently confers high levels of protection in the Controlled Human Malaria infection (CHMI) model. To provide a broad, unbiased assessment of the composition and kinetics of direct ex vivo human immune responses to CPS, we profiled whole-blood transcriptomes by RNA-seq before and during CPS immunization and following CHMI challenge. Differential expression of genes enriched in modules related to T cells, NK cells, protein synthesis, and mitochondrial processes were detected in fully protected individuals four weeks after the first immunization. Non-protected individuals demonstrated transcriptomic changes after the third immunization and the day of treatment, with upregulation of interferon and innate inflammatory genes and downregulation of B-cell signatures. Protected individuals demonstrated more significant interactions between blood transcription modules compared to non-protected individuals several weeks after the second and third immunizations. These data provide insight into the molecular and cellular basis of CPS-induced immune protection from P. falciparum infection

    Transcriptomic evidence for modulation of host inflammatory responses during febrile Plasmodium falciparum malaria

    Get PDF
    Identifying molecular predictors and mechanisms of malaria disease is important for understanding how Plasmodium falciparum malaria is controlled. Transcriptomic studies in humans have so far been limited to retrospective analysis of blood samples from clinical cases. In this prospective, proof-of-principle study, we compared whole-blood RNA-seq profiles at pre-and post-infection time points from Malian adults who were either asymptomatic (n = 5) or febrile (n = 3) during their first seasonal PCR-positive P. falciparum infection with those from malaria-naïve Dutch adults after a single controlled human malaria infection (n = 5). Our data show a graded activation of pathways downstream of pro-inflammatory cytokines, with the highest activation in malaria-naïve Dutch individuals and significantly reduced activation in malaria-experienced Malians. Newly febrile and asymptomatic infections in Malians were statistically indistinguishable except for genes activated by pro-inflammatory cytokines. The combined data provide a molecular basis for the development of a pyrogenic threshold as individuals acquire immunity to clinical malaria

    Diagnosis and treatment based on quantitative PCR after controlled human malaria infection

    Get PDF
    Abstract Background Controlled human malaria infection (CHMI) has become well-established in the evaluation of drugs and vaccines. Anti-malarial treatment is usually initiated when thick blood smears are positive by microscopy. This study explores the effects of using the more sensitive qPCR as the primary diagnostic test. Methods 1691 diagnostic blood samples were analysed by microscopy and qPCR from 115 volunteers (55 malaria naïve and 60 having received chemoprophylaxis and sporozoite immunization) who were challenged by five mosquitoes infected with Plasmodium falciparum sporozoites of the NF54 strain. Results Retrospective analysis of different qPCR criteria for diagnosis and treatment, showed that once daily qPCR (threshold 100 parasites/ml) had 99 % sensitivity and 100 % specificity, and shortened the median prepatent period from 10.5 to 7.0 days after CHMI when compared to twice daily measurement of thick blood smears (threshold 4000 parasites/ml). This is expected to result in a 78 % decrease of adverse events before initiation of treatment in future studies. Trial outcome related to infection and protective efficacy remained unchanged. Conclusion The use of qPCR as the primary diagnostic test in CHMI decreases symptoms as well as parasitaemia while obviating the need for twice daily follow-up. The implementation improves safety while reducing the clinical burden and costs without compromising the evaluation of protective efficacy

    Adverse events before and after initiation of treatment.

    No full text
    <p>Average number of possibly and probably related (both solicited and unsolicited) AE per previously NF54 protected or control volunteer in relation to the time of positive thick smear (day of treatment). Time points are plotted towards day of treatment, depicted as ‘T’, from 3 days before until 7 days after start of treatment.</p

    Study flow diagram.

    No full text
    <p>The previous NF54 CPS-immunization study is shown in grey. P = NF54 protected, NP = NF54 unprotected. ⨂ = Volunteer presumptively treated on day 10.5 after NF54 challenge and considered NF54 protected</p

    Parasitemia before and after treatment.

    No full text
    <p>Parasitemia measured by qPCR up until initiation of treatment (<b>A</b> and <b>C</b>) and from treatment onwards (<b>B</b> and <b>D</b>) in previously NF54 protected volunteers <b>(A</b> and <b>B)</b> and controls <b>(C</b> and <b>D)</b>. Each line represents an individual subject with the same colour before and after treatment. Values shown as 25 Pf/ml were negative (i.e. half the detection limit of the qPCR: 50 parasites/ml).</p
    corecore