6 research outputs found

    Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth

    Get PDF
    Chitosan is largely known for its activity against a wide range of microorganisms, in which the most acceptable antimicrobial mechanism is found to include the presence of charged groups in the polymer backbone and their ionic interactions with bacteria wall constituents. This interaction suggests the occurrence of a hydrolysis of the peptidoglycans in the microorganism wall, provoking the leakage of intracellular electrolytes, leading the microorganism to death. The charges present in chitosan chains are generated by protonation of amino groups when in acid medium or they may be introduced via structural modification. This latter can be achieved by a methylation reaction resulting in a quaternized derivative with a higher polymeric charge density. Since the charges in this derivative are permanents, it is expected a most efficient antimicrobial activity. Hence, in the present study, commercial chitosan underwent quaternization processes and both (mother polymer and derivative) were evaluated, in gel form, against Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative), as model bacteria. The results, as acquired from turbidity measurements, differ between materials with an expressive reduction on the Gram-positive microorganism (S. aureus) growth, while E. coli (Gram-negative) strain was less sensitive to both polymers. Additionally, the antibacterial effectiveness of chitosan was strongly dependent on the concentration, what is discussed in terms of spatial polymer conformation. Keywords: Biopolymer, Chitosan, N,N,N-trimethylchitosan, Antimicrobial activity, Turbidity measurements, Quaternization proces

    A review of the antimicrobial activity of chitosan

    No full text
    Chitosan, a versatile hydrophilic polysaccharide derived from chitin, has a broad antimicrobial spectrum to which gram-negative, gram-positive bacteria and fungi are highly susceptible. In the current review, three possible and accepted antimicrobial mechanisms for chitosan are presented and briefly discussed. The activity dependence on polymeric molecular weight (MW) and degree of acetylation (DA) are described. The chitosan minimum inhibitory concentrations (MIC) are summarized according to recent data found in the literature. The potential to improve inhibitory growth of bacteria by using water soluble chitosan derivatives is also discussed. The data indicate that the effectiveness of chitosan varies and is dependent on species of target microorganisms
    corecore