1,374 research outputs found

    Heterogenised Molecular Catalysts for the Reduction of CO2 to Fuels.

    Get PDF
    CO(2) conversion provides a possible solution to curtail the growing CO(2) levels in our atmosphere and reduce dependence on fossil fuels. To this end, it is essential to develop efficient catalysts for the reduction of CO(2). The structure and activity of molecular CO(2) reduction catalysts can be tuned and they offer good selectivity with reasonable stability. Heterogenisation of these molecules reduces solvent restrictions, facilitates recyclability and can dramatically improve activity by preventing catalyst inactivation and perturbing the kinetics of intermediates. The nature and morphology of the solid-state material upon which the catalyst is immobilised can significantly influence the activity of the hybrid assembly. Although work in this area began forty years ago, it has only drawn substantial attention in recent years. This review article gives an overview of the historical development of the field.Financial support from the EPSRC (EP/H00338X/2 to E.R; Doctoral Prize to C.D.W.), the Christian Doppler Research Association (Austrian Federal Ministry of Science, Research and Economy and the National Foundation for Research, Technology and Development) and the OMV Group (to E.R.) is gratefully acknowledged.This is the author accepted manuscript. The final version is available from the Swiss Chemical Society via http://dx.doi.org/10.2533/chimia.2015.43

    Solar reforming of biomass with homogeneous carbon dots

    Get PDF
    A sunlight-powered process is reported that employs carbon dots (CDs) as light absorber for the conversion of lignocellulose into sustainable H2 fuel and organics. This photocatalytic system operates in pure and untreated sea water using a benign pH (2-8) at ambient temperature and pressure. The CDs can be produced in a scalable synthesis directly from biomass itself and their solubility allows for good interactions with the insoluble biomass substrates. They also display excellent photophysical properties with a high fraction of long-lived charge carriers and the availability of a reductive and an oxidative quenching pathway. The presented CD-based biomass photoconversion system opens new avenues for sustainable, practical, and renewable fuel production through biomass valorization

    A Tool to Recover Scalar Time-Delay Systems from Experimental Time Series

    Full text link
    We propose a method that is able to analyze chaotic time series, gained from exp erimental data. The method allows to identify scalar time-delay systems. If the dynamics of the system under investigation is governed by a scalar time-delay differential equation of the form dy(t)/dt=h(y(t),y(tτ0))dy(t)/dt = h(y(t),y(t-\tau_0)), the delay time τ0\tau_0 and the functi on hh can be recovered. There are no restrictions to the dimensionality of the chaotic attractor. The method turns out to be insensitive to noise. We successfully apply the method to various time series taken from a computer experiment and two different electronic oscillators

    Amplified stretch of bottlebrush-coated DNA in nanofluidic channels

    Get PDF
    The effect of a cationic-neutral diblock polypeptide on the conformation of single DNA molecules confined in rectangular nanochannels is investigated with fluorescence microscopy. An enhanced stretch along the channel is observed with increased binding of the cationic block of the polypeptide to DNA. A maximum stretch of 85% of the contour length can be achieved inside a channel with a cross-sectional diameter of 200 nm and at a 2-fold excess of polypeptide with respect to DNA charge. With site-specific fluorescence labelling, it is demonstrated that this maximum stretch is sufficient to map large-scale genomic organization. Monte Carlo computer simulation shows that the amplification of the stretch inside the nanochannels is owing to an increase in bending rigidity and thickness of bottlebrush-coated DNA. The persistence lengths and widths deduced from the nanochannel data agree with what has been estimated from the analysis of atomic force microscopy images of dried complexes on silica.Singapore-MIT Alliance for Research and TechnologyNational Science Foundation (U.S.

    Mechanistic study of an immobilized molecular electrocatalyst by in situ gap-plasmon-assisted spectro-electrochemistry

    Get PDF
    Immobilized first-row transition metal complexes are potential low-cost electrocatalysts for selective CO2 conversion in the production of renewable fuels. Mechanistic understanding of their function is vital for the development of next-generation catalysts, although the poor surface sensitivity of many techniques makes this challenging. Here, a nickel bis(terpyridine) complex is introduced as a CO2 reduction electrocatalyst in a unique electrode geometry, sandwiched by thiol-anchoring moieties between two gold surfaces. Gap-plasmon-assisted surface-enhanced Raman scattering spectroscopy coupled with density functional theory calculations reveals that the nature of the anchoring group plays a pivotal role in the catalytic mechanism. Our in situ spectro-electrochemical measurement enables the detection of as few as eight molecules undergoing redox transformations in individual plasmonic hotspots, together with the calibration of electrical fields via vibrational Stark effects. This advance allows rapid exploration of non-resonant redox reactions at the few-molecule level and provides scope for future mechanistic studies of single molecules

    The pre-WDVV ring of physics and its topology

    Full text link
    We show how a simplicial complex arising from the WDVV (Witten-Dijkgraaf-Verlinde-Verlinde) equations of string theory is the Whitehouse complex. Using discrete Morse theory, we give an elementary proof that the Whitehouse complex Δn\Delta_n is homotopy equivalent to a wedge of (n2)!(n-2)! spheres of dimension n4n-4. We also verify the Cohen-Macaulay property. Additionally, recurrences are given for the face enumeration of the complex and the Hilbert series of the associated pre-WDVV ring.Comment: 13 pages, 4 figures, 2 table

    Mechanistic study of an immobilized molecular electrocatalyst by in situ gap-plasmon-assisted spectro-electrochemistry

    Get PDF
    Immobilised first-row transition metal complexes are potential low-cost electrocatalysts for selective CO2 conversion to produce renewable fuels. Mechanistic understanding of their function is vital for the development of next-generation catalysts, though poor surface sensitivity of many techniques makes this challenging. Here, a nickel bis(terpyridine) complex is introduced as a CO2 reduction electrocatalyst in a unique electrode geometry, sandwiched by thiol anchoring moieties between two gold surfaces. Gap-plasmon-assisted surface-enhanced Raman scattering spectroscopy coupled with density functional theory calculations reveals the nature of the anchoring group plays a pivotal role in the catalytic mechanism by eliminating ligand loss. Our in-situ spectro-electrochemical measurement enables the detection of as few as 8 molecules undergoing redox transformations in the individual gold-sandwiched nanocavities, together with the calibration of electrical fields via vibrational Stark effects. This advance allows rapid exploration of non-resonant redox reactions at the few-molecule level and provides scope for future mechanistic studies of single-molecules

    Dark Photocatalysis: Storage of Solar Energy in Carbon Nitride for Time-Delayed Hydrogen Generation

    Get PDF
    While natural photosynthesis serves as the model system for efficient charge separation and decoupling of redox reactions, bio-inspired artificial systems typically lack applicability owing to synthetic challenges and structural complexity. We present herein a simple and inexpensive system that, under solar irradiation, forms highly reductive radicals in the presence of an electron donor, with lifetimes exceeding the diurnal cycle. This radical species is formed within a cyanamide-functionalized polymeric network of heptazine units and can give off its trapped electrons in the dark to yield H2_{2} , triggered by a co-catalyst, thus enabling the temporal decoupling of the light and dark reactions of photocatalytic hydrogen production through the radical's longevity. The system introduced here thus demonstrates a new approach for storing sunlight as long-lived radicals, and provides the structural basis for designing photocatalysts with long-lived photo-induced states.This work was supported by the Deutsche Forschungsgemeinschaft (project LO1801/1-1) and an ERC Starting Grant (B.V.L., grant number 639233), the Max Planck Society, the cluster of excellence Nanosystems Initiative Munich (NIM), and the Center for Nanoscience (CeNS). We acknowledge support by the Christian Doppler Research Association (Austrian Federal Ministry of Science, Research and Economy, National Foundation for Research, Technology and Development) and the OMV Group (H.K., E.R.). V.W.-h.L. gratefully acknowledges a postdoctoral scholarship from the Max Planck Society
    corecore