20 research outputs found

    Phylogenomics reveals the history of host use in mosquitoes

    Get PDF
    Mosquitoes have profoundly affected human history and continue to threaten human health through the transmission of a diverse array of pathogens. The phylogeny of mosquitoes has remained poorly characterized due to difficulty in taxonomic sampling and limited availability of genomic data beyond the most important vector species. Here, we used phylogenomic analysis of 709 single copy ortholog groups from 256 mosquito species to produce a strongly supported phylogeny that resolves the position of the major disease vector species and the major mosquito lineages. Our analyses support an origin of mosquitoes in the early Triassic (217 MYA [highest posterior density region: 188–250 MYA]), considerably older than previous estimates. Moreover, we utilize an extensive database of host associations for mosquitoes to show that mosquitoes have shifted to feeding upon the blood of mammals numerous times, and that mosquito diversification and host-use patterns within major lineages appear to coincide in earth history both with major continental drift events and with the diversification of vertebrate classes. © 2023, Springer Nature Limited

    Interspecific Competition Between Larval Culex restuans

    No full text

    SelectedvsWild-expermt

    No full text
    .ped file for comparisons of population genomics for field populations from Florid

    FloridaPop

    No full text
    Florida population genetics file (.ped

    Data from: Rapid evolution and the genomic consequences of selection against interspecific mating

    No full text
    While few species introduced into a new environment become invasive, those that do provide critical information on ecological mechanisms that determine invasions success and the evolutionary responses that follow invasion. Aedes albopictus (the Asian tiger mosquito) was introduced into the naturalized range of Aedes aegypti (the yellow fever mosquito) in the USA in the mid-1980s, resulting in the displacement of A. aegypti in much of the southeastern USA. The rapid displacement was likely due to the superior competitive ability of A. albopictus as larvae and asymmetric mating interference competition, in which male A. albopictus mate with and sterilize A. aegypti females, a process called “satyrization”. The goal of this study was to examine the genomic responses of a resident species to an invasive species in which the mechanism of character displacement is understood. We used double-digest restriction enzyme DNA sequencing (ddRADseq) to analyze outlier loci between selected and control lines of laboratory-reared A. aegypti females from two populations (Tucson, AZ and Key West, Florida, USA), and individual females classified as either “resisted” or “mated with” A. albopictus males via mating trials of wild-derived females from four populations in Florida. We found significant outlier loci in comparing selected and control lines and between mated and non-mated A. aegypti females in the laboratory and wild-derived populations, respectively. We found overlap in specific outlier loci between different source populations that support consistent genomic signatures of selection within A. aegypti. Our results point to regions of the A. aegypti genome and potential candidate genes that may be involved in mating behavior, and specifically in avoiding interspecific mating choices

    Susceptibility of Florida mosquitoes to infection with Chikungunya virus

    No full text
    Chikungunya virus (CHIKV) has caused recent, large epidemics on islands in the Indian Ocean, raising the possibility of more widespread CHIKV epidemics. Historically, CHIKV has been vectored by Aedes aegypti, but these outbreaks likely also involved Ae. albopictus. To examine the potential for an outbreak of CHIKV in Florida, we determined the susceptibility to CHIKV of F1 Ae. aegypti and Ae. albopictus from Florida. In addition, we also evaluated two well-characterized laboratory strains (Rockefeller and Lake Charles) of these species. We determined infection and dissemination rates as well as total body titer of mosquitoes 7 days post-exposure (pe) (Ae. albopictus) and 3, 7, and 10 days pe (Ae. aegypti). All mosquito strains were susceptible to both infection and dissemination, with some variation between strains. Our results suggest Florida would be vulnerable to transmission of CHIKV in urban and rural areas where the two vector species occur. Copyright © 2008 by The American Society of Tropical Medicine and Hygiene

    SelectedvsWild-expermt

    No full text
    .map file for population genomic comparisons of the wild derived mosquitoes
    corecore