2,192 research outputs found

    Nonlinear dynamics of relativistic charged particle beams

    Get PDF
    The idea behind this work is to analyze the transversal dynamics of a relativistic charged particle beam. The beam is azimuthally symmetric, focused by a constant magnetic field and supposed to be initially cold. While mismatched, nonrelativistic, and homogeneous beams oscillate with an invariant cold density profile, it is shown that relativistic homogeneous beams progressively heat and lose an important amount of constituents during its magnetic confinement. This heating process starts with phase-space wave-breaking, a mechanism observed before in initially inhomogeneous beams. The results have been obtained with full self-consistent N-particle beam numerical simulations

    Chaos and the continuum limit in nonneutral plasmas and charged particle beams

    Get PDF
    This paper examines discreteness effects in nearly collisionless N-body systems of charged particles interacting via an unscreened r^-2 force, allowing for bulk potentials admitting both regular and chaotic orbits. Both for ensembles and individual orbits, as N increases there is a smooth convergence towards a continuum limit. Discreteness effects are well modeled by Gaussian white noise with relaxation time t_R = const * (N/log L)t_D, with L the Coulomb logarithm and t_D the dynamical time scale. Discreteness effects accelerate emittance growth for initially localised clumps. However, even allowing for discreteness effects one can distinguish between orbits which, in the continuum limit, feel a regular potential, so that emittance grows as a power law in time, and chaotic orbits, where emittance grows exponentially. For sufficiently large N, one can distinguish two different `kinds' of chaos. Short range microchaos, associated with close encounters between charges, is a generic feature, yielding large positive Lyapunov exponents X_N which do not decrease with increasing N even if the bulk potential is integrable. Alternatively, there is the possibility of larger scale macrochaos, characterised by smaller Lyapunov exponents X_S, which is present only if the bulk potential is chaotic. Conventional computations of Lyapunov exponents probe X_N, leading to the oxymoronic conclusion that N-body orbits which look nearly regular and have sharply peaked Fourier spectra are `very chaotic.' However, the `range' of the microchaos, set by the typical interparticle spacing, decreases as N increases, so that, for large N, this microchaos, albeit very strong, is largely irrelevant macroscopically. A more careful numerical analysis allows one to estimate both X_N and X_S.Comment: 13 pages plus 17 figure

    Combined numerical and experimental investigations on Fretting wear

    Get PDF
    AbstractIn mechanical engineering applications, cyclic loadings are most commonly seen. In many assemblies of moving components, contact problems under various lubrication conditions are lifetime-limiting. There, the relative motion of the contacting bodies combined with high loads transmitted via the contact surface leads to fretting fatigue and fretting wear failure. The present contribution gives first promising results within a long-term research project concerned with developing a methodological approach for the design and lifetime estimation of components under tribo-mechanical loading

    Correlation length scalings in fusion edge plasma turbulence computations

    Full text link
    The effect of changes in plasma parameters, that are characteristic near or at an L-H transition in fusion edge plasmas, on fluctuation correlation lengths are analysed by means of drift-Alfven turbulence computations. Scalings by density gradient length, collisionality, plasma beta, and by an imposed shear flow are considered. It is found that strongly sheared flows lead to the appearence of long-range correlations in electrostatic potential fluctuations parallel and perpendicular to the magnetic field.Comment: Submitted to "Plasma Physics and Controlled Fusion

    Assessing Pulmonary Perfusion in Emphysema Automated Quantification of Perfused Blood Volume in Dual-Energy CTPA

    Get PDF
    Objectives: The objective of this study was to determine whether automated quantification of lung perfused blood volume (PBV) in dual-energy computed tomographic pulmonary angiography (DE-CTPA) can be used to assess the severity and regional distribution of pulmonary hypoperfusion in emphysema. Materials and Methods: We retrospectively analyzed 40 consecutive patients (mean age, 67 13] years) with pulmonary emphysema, who have no cardiopulmonary comorbidities, and a DE-CTPA negative for pulmonary embolism. Automated quantification of global and regional pulmonary PBV was performed using the syngo Dual Energy application (Siemens Healthcare). Similarly, the global and regional degrees of parenchymal hypodensity were assessed automatically as the percentage of voxels with a computed tomographic density less than -900 Hounsfield unit. Emphysema severity was rated visually, and pulmonary function tests were obtained by chart review, if available. Results: Global PBV generated by automated quantification of pulmonary PBV in the DE-CTPA data sets showed a moderately strong but highly significant negative correlation with residual volume in percentage of the predicted residual volume (r = -0.62; P = 0.002; n = 23) and a positive correlation with forced expiratory volume in 1 second in percentage of the predicted forced expiratory volume in 1 second (r = 0.67; P < 0.001; n = 23). Global PBV values strongly correlated with diffusing lung capacity for carbon monoxide (r = 0.80; P < 0.001; n = 15). Pulmonary PBV values decreased with visual emphysema severity (r = -0.46, P = 0.003, n = 40). Moderate negative correlations were found between global PBV values and parenchymal hypodensity both in a per-patient (r = -0.63; P G 0.001; n = 40) and per-region analyses (r = -0.62; P < 0.001; n = 40). Conclusions: Dual-energy computed tomographic pulmonary angiography allows simultaneous assessment of lung morphology, parenchymal density, and pulmonary PBV. In patients with pulmonary emphysema, automated quantification of pulmonary PBV in DE-CTPA can be used for a quick, reader-independent estimation of global and regional pulmonary perfusion, which correlates with several lung function parameters

    Bosonization of current-current interactions

    Get PDF
    We discuss a generalization of the conventional bosonization procedure to the case of current-current interactions which get their natural representation in terms of current instead of fermion number density operators. A consistent bosonization procedure requires a geometrical quantization of the hamiltonian action of WW_\infty on its coadjoint orbits. An integrable example of a nontrivial realization of this symmetry is presented by the Calogero-Sutherland model. For an illustrative nonintegrable example we consider transverse gauge interactions and calculate the fermion Green function.Comment: 15 pages, TeX, C Version 3.0, Princeton preprin

    Reflections on the Evolution of Smart Polymers

    Get PDF
    © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Since Staudinger\u27s recognition that polymers were long chain molecules with covalent bonds between repeating units, the field has evolved tremendously. In addition to their many structural roles, polymers have been developed to exhibit “smart” stimuli-responsive behavior. This article will describe the evolution of selected classes of smart polymers including those responsive to changes in pH, temperature, light, and mechanical stimuli, as well as self-immolative polymers and their application in drug delivery, sensors, and actuators. It will also highlight key advancements in polymer chemistry that enabled rapid progress over the past ∼20 years. Whether the key achievements were predictable will be discussed, and the extent to which polymer science remains an independent science versus a service tool will be addressed. Finally, some possibilities for the evolution of the field over the next 20–30 years will be described
    corecore