3,041 research outputs found
Stability of the solutions of elliptic partial differential equations with general boundary conditions
Existence, uniqueness, stability, and asymptotic stability conditions for solution of elliptic partial differential equations with general boundary condition
Introduction, Symposium: Who Guards the Guardians?: Monitoring and Enforcement of Charity Governance
Introduction, Symposium: Who Guards the Guardians?: Monitoring and Enforcement of Charity Governance
Ibuprofen Ameliorates Fatigue- And Depressive-Like Behavior in Tumor-Bearing Mice
Aims: Cancer-related fatigue (CRF) is often accompanied by depressed mood, both of which reduce functional status and quality of life. Research suggests that increased expression of pro-inflammatory cytokines is associated with skeletal muscle wasting and depressive- and fatigue-like behaviors in rodents and cancer patients. We have previously shown that treatment with ibuprofen, a nonsteroidal anti-inflammatory drug, preserved muscle mass in tumor-bearing mice. Therefore, the purpose of the present study was to determine the behavioral effects of ibuprofen in a mouse model of CRF.
Main methods: Mice were injected with colon-26 adenocarcinoma cells and treated with ibuprofen (10 mg/kg) in the drinking water. Depressive-like behavior was determined using the forced swim test (FST). Fatigue-like behaviors were determined using voluntary wheel running activity (VWRA) and grip strength. The hippocampus, gastrocnemius muscle, and serum were collected for cytokine analysis.
Key findings: Tumor-bearing mice showed depressive-like behavior in the FST, which was not observed in mice treated with ibuprofen. VWRA and grip strength declined in tumor-bearing mice, and ibuprofen attenuated this decline. Tumor-bearing mice had decreased gastrocnemius muscle mass and increased expression of IL-6, MAFBx and MuRF mRNA, biomarkers of protein degradation, in the muscle. Expression of IL-1β and IL-6 was also increased in the hippocampus. Treatment with ibuprofen improved muscle mass and reduced cytokine expression in both the muscle and hippocampus of tumor-bearing mice.
Significance: Ibuprofen treatment reduced skeletal muscle wasting, inflammation in the brain, and fatigue- and depressive-like behavior in tumor-bearing mice. Therefore, ibuprofen warrants evaluation as an adjuvant treatment for CRF
Chaos and the continuum limit in nonneutral plasmas and charged particle beams
This paper examines discreteness effects in nearly collisionless N-body
systems of charged particles interacting via an unscreened r^-2 force, allowing
for bulk potentials admitting both regular and chaotic orbits. Both for
ensembles and individual orbits, as N increases there is a smooth convergence
towards a continuum limit. Discreteness effects are well modeled by Gaussian
white noise with relaxation time t_R = const * (N/log L)t_D, with L the Coulomb
logarithm and t_D the dynamical time scale. Discreteness effects accelerate
emittance growth for initially localised clumps. However, even allowing for
discreteness effects one can distinguish between orbits which, in the continuum
limit, feel a regular potential, so that emittance grows as a power law in
time, and chaotic orbits, where emittance grows exponentially. For sufficiently
large N, one can distinguish two different `kinds' of chaos. Short range
microchaos, associated with close encounters between charges, is a generic
feature, yielding large positive Lyapunov exponents X_N which do not decrease
with increasing N even if the bulk potential is integrable. Alternatively,
there is the possibility of larger scale macrochaos, characterised by smaller
Lyapunov exponents X_S, which is present only if the bulk potential is chaotic.
Conventional computations of Lyapunov exponents probe X_N, leading to the
oxymoronic conclusion that N-body orbits which look nearly regular and have
sharply peaked Fourier spectra are `very chaotic.' However, the `range' of the
microchaos, set by the typical interparticle spacing, decreases as N increases,
so that, for large N, this microchaos, albeit very strong, is largely
irrelevant macroscopically. A more careful numerical analysis allows one to
estimate both X_N and X_S.Comment: 13 pages plus 17 figure
Fluoxetine Prevents the Development of Depressive-like Behavior in a Mouse Model of Cancer Related Fatigue
Cancer patients frequently suffer from fatigue, a complex syndrome associated with tiredness and depressed mood. Cancer-related fatigue (CRF) can be present at the time of diagnosis, escalates during treatment, and can persist for years after treatment. CRF negatively influences quality of life, limits functional independence, and is associated with decreased survival in patients with incurable disease. We have previously shown that increased pro-inflammatory cytokine expression in the brain contributes to depressive- and fatigue-like behaviors in a mouse model of CRF. Inflammatory cytokines increase the activity of indoleamine 2,3-dioxygenase (IDO) and kynurenine 3-monooxygenase (KMO), which competitively reduce serotonin synthesis. Reduced serotonin availability in the brain and increased production of alternative neuroactive metabolites of tryptophan are thought to contribute to the development of depression and fatigue. The purpose of this study was to determine the effects of fluoxetine, a selective serotonin reuptake inhibitor (SSRI), on brain cytokines and behavioral measures of fatigue and depression in tumor-bearing mice. Here we show that tumor growth increased brain expression of pro-inflammatory cytokines and KMO. Treatment with fluoxetine had no effect on tumor growth, muscle wasting, fatigue behavior, or cytokine expression in the brain. Fluoxetine, however, reduced depressive-like behaviors in tumor bearing mice. In conclusion, our data confirm that increased brain expression of pro-inflammatory cytokines is associated with tumor-induced fatigue- and depressive-like behaviors. However, it is possible to separate the effects of tumor growth on mood and fatigue-like behaviors using SSRIs such as fluoxetine
Generation of angular-momentum-dominated electron beams from a photoinjector
Various projects under study require an angular-momentum-dominated electron
beam generated by a photoinjector. Some of the proposals directly use the
angular-momentum-dominated beams (e.g. electron cooling of heavy ions), while
others require the beam to be transformed into a flat beam (e.g. possible
electron injectors for light sources and linear colliders). In this paper, we
report our experimental study of an angular-momentum-dominated beam produced in
a photoinjector, addressing the dependencies of angular momentum on initial
conditions. We also briefly discuss the removal of angular momentum. The
results of the experiment, carried out at the Fermilab/NICADD Photoinjector
Laboratory, are found to be in good agreement with theoretical and numerical
models.Comment: 8 pages, 7 figures, submitted to Phys. Rev. ST Accel. Beam
- …