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ABSTRACT
STABILITY OF THE SOLUTIONS OF ELLIPTIC PARTIAL

DIFFERENTIAL EQUATIONS WITH GENERAL BOUNDARY CONDITIONS

Eugene Reiser, Ph.D.
University of Pittsburgh, 1970
The object of this dissertation is to establish sufficient
conditions to ensure the existence, uniqueness, stability and asymptotic

stability of the solution to the following initial-boundary value problem

%%SELEL + A(x,D)u(x,t) = £f(u) xeQ, >0

with general boundary conditions

~
Bj(x,D)u(x,t) =0 XedQ,t>0 (0<j<m-1)

and initial condition
u(x,0) = uo(x)

where A(x,D) is a strongly elliptic partial differential operator in QcRn,

m-1
11 3=0

the Dirichlet boundary conditions as a subclass, and f is, in general, a

n>1, and {B

nonlinear function defined on the appropriate function space. By setting
u(t) = u(-,t) the above equation with the boundary conditions and initial
condition are reduced to an abstract (nonlinear) operator differential

equation

) 4 pu(t) = £() (t>0)
u(o) = u
where A is an (unbounded) linear operator with domain and range both
contained in the same: real Hilbert space H, and f is a nonlingar function

mapping all of H into H. With the proper definition of the base Hilbert

space, H, A becomes an extension of the operator A(x,D). With additional

satisfies very general boundary conditions which include

vi



vii

assumptions on A and the nonlinear function f(u) the existence, unique-
ness, stability or asymptotic stability of the initial-boundary value
problem is ensured from the results obtained for the abstract operator
equation.

The investigation of stability criteria is extended to the study of
the following initial-boundary value problem

azu(glt) + a du(x, t)

at2 ot

+ A(x,D)u(x,t) = f(u)

Ju
1 = u,u2 T this

equation 1s reduced to a system of equations of the form

with general boundary conditioms. By setting u

su 0 -1 .
=+ u=£f(
k3 A(x,D) a

u = u1 0
- u, ? fw = f(x,ul,uz) .

By a suitable choice of function space, we obtain the abstract operator

where

equation of the form

du(t)
dt

+ Au(t) = £(w) (£20)

u(o) = u
where A is an abstract linear operator extension of A(x,D) mapping some
function space into itself. With certain restrictions on the system

(A(x,D),{B.},Q), and on the nonlinear function £(u), stability criteria is

]
established for the general boundary value problem from the results obtained
for the abstract operational differential equation. The linear probiem,

f(u) = 0, and the nonlinear problem are considered for QcRn, where the

cases n > 2 and n = 1 are considered separately, since the boundary
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conditions differ for the two cases. Applications are given which show
how the theory can be applied to a large class of physical and engineering

problems.



1.0. INTRODUCTION

A.M. Lyapunov in [19]%* developed his so-called "second method" o.
"direct method" which years later was used in answering the question of
stability of differential equations from the given form of the equations
together with the boundary conditions without explicit knowledge of the
solutions. In the study of ordinary differential equations, the main idea
of Lyapunov's direct method is the construction of a "Lyapunov functional,"
v(u) with u in some finite dimensional space and having the properties that
v(u) is positive and the derivative of v#uw) along solutions of the given
equation is negative. Since many physical problems must be described by
partial differential equations it was natural to extend Lyapunov's direct
method to study the case for partial differential equations by the con~
struction of a Lyapunov functional in infinite dimensional spaces, and by
the use of function spaces on which a topology was defined. Zubov in [36]
considered equations of the form

du(x,t)

au
at = f (x$u’-a_)z)

and established a stability theory for the special case of f linear in %ﬁ.
In more recent years a growing number of results have been discovered as
can be seen in a survey of the literature by Wang [34]. However, each one
was only concerned with specific partial differential operators and con-
sidered only small classes of problems. Ng rigorous mathematical approach
covering a large class of systems was used and often the existence of the
solution was assumed. There were some authors who studied the stabiiity

problem for operational differential equations, for example, Taam in [31]

*
Numbers in brackets designate references at the end of this dissertation.



studied the stability properties of the equation
QﬁéEl + Au(t) = £(t,u,r)

where A was either a bounded linear operator or the infinitesimal generator
of a semi-group and sufficient conditions were given for the existence and

asymptotic stabiiity of a periodic solution.

1.1. Recent Results for the Dirichlet Problem

One of the problems of extending the Lyapunov stability theory from
ordinary differential equations to partial differential equations is that
the existence of the solution must first be established, since the deriva-
tive of the Lyapunov functional is taken along solutions of the given
equation. Buis in [7] was the first to rigorously use the results for oper-
ational differential equations to solve the stability problem for a large
class of initial ~ boundary value problems by considering a linear partial

differential equation
38 4 Ax,D)ulx,t) = 0 (1-1)

with Dirichlet boundary conditions and a given initial function, where
A(x,D) is a linear partial differential operator and u(x,t) 1s in some
prescribed function space. An operator differential equation is formed as

follows, with the abstract equation

E‘—“-ff?- + Au(t) = 0 (£>0) (1-2)

where uf{t) is a vector valued function with values in the real Hilbert space



H and A is a linear unbounded operator with domain and range in H, and A
can be considered as the extension of the partial differential operator
A(x,D) in (1-1) in the sense that for any u in the domain of A, Au is the

function defined by
(Au) (x) = A(x,D)u(x)

where the domain, D(A), and base Hilbert space, H, are complete function
spaces and the doméin of A is characterized by the Dirichlet boundary con-
ditions. This shows that the operator equation (1-2) can be considered as
an abstract extension of (1-1). The stability problem of (1-2) is then
studied. By using semi-group theory, the solution of (1-2) can be repre-
sented by a semi~group in the sense that if a solution of (1-2) with initial
value at t = t, of uoaD(A) is denoted by u(t;uo,to), then under suitable
conditions the operator A is the infinitesimal generator of a semi~group
{Ttlt > 0} of bounded linear operators such that the solution of (1-2)

exists and is given by

u(t;uo’to) = Ttuo (t>0)

Thus, the stability properties of the solution of (1-2) are related to the
properties of the semi-group gemerated by A. Buis established sufficient
conditions for A to generate a semi-group (of class Co) so that a solution

of (1-2) exists and is stable. Then.from the semi-group properties and the
definition of D{A), this gave sufficient conditions for the solutions of
(1-1) to exist, satisfy the initial condition, verify the Dirichlet boundary
conditions and also be asymptotically stable or stable. Buis developed his
stability criteria for the operator equation solving only the class of iinear

partial differential equations satisfying the Dirichlet boundary conditions.



Pao in [23] examined the non-linear operational differential equation

or evolution equation
—dﬂd‘él + Au(t) = 0 (£>0) (1-3)

where A, is in general an unbounded, non-linear operator with domain and
range both contained in the same real (or complex) Hilbert space H. 1In
[23], necessary and sufficient conditions were given so that A would gener-
ate a non-linear semi-group {Tthzo} of bounded operators in a Hilbert space
which ensures the existence and uniqueness of the solution of (1-3), while
the properties of the semi-group establish the stability of the solution to
(1-3). As a subclass of the evolution equation (1-3), Pao in [23] also

considered the operator equation of the form:
) 4 pu(e) = £ (t>0) (1-4)

in which A is a linear, unbounded operator with domain and range both con-
tained in a real Hilbert space H, and f is a non~linear function from H

into H. A has the property of being the infinitesimal generator of a linear
semi-group of bounded operators in a Hilbert space and conditions were given
on f to ensure the existence, uniqueness, asymptotic stability or stability
of the solution of (1-4). Pao only applied these results to the relatively
small class of partial differential equations which satisfy Dirichlet bound~
ary conditions, since it can be related to the evolution equation (1-3) or
(1-4) readily. Because of the difficulty of defining the abstract operator
A, its domain D(A), and the base Hilbert space H so i1t would satisfy the
conditions imposed by Pao in [23] and also relate the equation (1-4) to the

non-linear partial differential equation (1~5) with general boundary con-

ditions work has not been done to solve the more general boundary value problem



S 4 A DIulE,t) = £(0). (1-5)

1.2. Recent Developments in General Boundary Value Problems

In studying the stability problem for more general initial-boundary
value problems for partial differential equations one needajto ensure the
existence and uniqueness as well as the stability of the solution. Schechter
in [28] and [29],~Lions and Magenes [18] considered the partial differential
equation with more general boundary conditions in which they were interested
in establishing criteria for the existence of the solution to the general
boundary value problem, Necessary and sufficient conditions were established
by placing certain restrictions on the system (A(x,D),{Bj},Q) to ensure
the existence and uniqueness of the solution to the elliptic partial differ-

ential equation

A(x,D)u = £ in @ (1~6)

Bj(x,D)u = 0 on 9N (0<j<m-1)

where A(x,D) is an elliptic partial differential operator, B, (x,D) are

3

m -~ linear partial differential operators, and  is a subset of the

Euclidean n - space R®, n > 2, with boundary, 9Q. Certailn restrictions

m-1

(x,D)}jBO ?

are placed on {B that of being a 'normal set’' and satisfying

3

the 'complementary condition; to assure that the boundary value problem is
well-posed. It should be noted that these conditions include the Dirichlet
conditions'as a subclass. Also A(x,D) is a 'properly elliptic’ partial

differential operator, and Q is sufficiently smooth. With these conditions

on (A(x,D),{B,},2) the solution to (1-6) is found to exist and be unique.

3

The functions, u, in (1-6) are in some prescribed function space satisfying



certain differentiability conditions in @ and near the boundary. Agmon,
Douglis and Niremberg [2], Agmon {1], Browder [6] and Friedman [11] studied
the problem of differentiability of the solution to the general boundary-
value problem (1-6) in 2 and near the boundary, 3Q. The function space in
which the solutions are found are complete Hilbert spaces and are charac~
terized by the boundary conditions given. A discussion of this character-
ization is found in Grebb [12] and Friedman [11l]. In solving the general
boundary value proﬁlem (1-6), these authors did not consider the stability

problem.

1.3. Area for Extension

In [23], utilizing the theory developed for operator differential
equations, sufficient conditions were given to ensure the existence, unique-
ness, asymptotic stability and stability for the solution of the nonlinesyx
partial differential equation

9—‘5—%’—‘1 + A(x,D)u(x,t) = £(u) (1-7)

with Dirichlet boundary conditions, where f(u) = 0 gives us the linear
equation. Since many physical and engineering problems are in the form of
(1-7) with more general boundary conditions, for instance, the mixed problem,
it is necessary to consider the stability problem for the partial differ-
ential equation (1-7) with general boundary conditions. Also since many

physical problems are in the form

2

d ug§,t2 + @ 3&%%&51-+ A(x,D)u(x,t) = £(u) (1-8)
at |

with general boundary conditions, such as the wave equation and the bending



plate problem, this stability problem must also be comsidered. In order

to study the stability problem one must ensure the existence and uniqueness
of the solution as well as the stability of the solution. The work done in
[23] on operator differential equations and the work in [18], [28], and [29]
on the existence and uniqueness of solutions to more general boundary value
problems, allows us to consider the stability problem for a large class of
partial differential equations, i.e., (1~7) and (1-8), with general boundary

conditions.



2,0. STATEMENT OF THE PROBLEM

Many physical or engineering problems can be placed in the follow ng

form

Buéztc,t) + A(x,D)ulx,t) = £(u) xe 2, £>0 (2-1)

or in the form

azu(x,tl,+ a du(x,t)

at2 ot

+ A(x,D)u(x,t) = f(u) =xe Q, t>0 (2-2)

where u(x,t) is a function defined on & x[0,~), and where @ is a bounded
domain in the n - dimensional Euclidean space Rn, and A(x,D) is a linear
formal partial differential operator whose coefficients are infinitely
differentiable functions defined on § and are time independent. £(u) is,
in general, a non-linear function defined on a function space, such that
if £(u) = 0 then (2-1) and (2-2) are linear and if f(u) # O we have a non=
linear, or semi-linear, partial differential equation. To specify the

solution of (2-1) or (2-2) a system of boundary conditions is given by

Bj(xlD)u(xlt) =0 x'e 32, t20 (0<j<m-1) (2-3)

where the Bj(x,D) are m - linear partial differential operators defined on
the boundary, 3Q, and are independent of time. The coefficients are infi-
nitely differentiable functions defined on 3Q. Also, an initial condition

is given by

u(x,0) = u_(x) (c4)

where uo(x) is a given space dependent function. Since A(x,D) is a linear

differential operator them (2-1) and (2-3) or (2-2) and (2-3) can be reduced



to the following form
d_u%l + Au(t) = £(w) (2-5)

where u(t) is a vector valued function defined on [0,») to a suitable
Hilbert space H, and A, in general, is an unbounded linear operator whose
domain and range are both contained in H, and f is a non-linear operator
defined on H into H. In the case (2-2) and (2-3), the Hilbert space H is

a product of Hilbert spaces, H = Hl X H2’ with u(t) a 2 - dimensional vector
valued function, A a 2 x 2 matrix whose elements are linear partial differ-
ential operators and f(u) a 2 - dimensional vector in Hl X H2. In all cases,
the operator equation (2-5) can be considered as an abstract extension of
the initial-boundary value problem (2-1) and (2-3), or (2-2) and (2-3),
examples of which are the heat equation and the wave equation with mixed
boundary conditions. The object of this investigation is to establish

suf ficlent conditions on the system (A(x,D),{B,},2) to ensure the existence,

3
uniqueness and asymptotic stability or stability of the solution of (2-1),
(2-3), and (2-4) or of (2-2), (2-3) and (2-4). This is done by defining the
appropriate abstract operator in a base Hilbert space, H, and defining the
correct domain, D(A), characterized by the boundary conditions (2-3) and
forming the correct abstract opezator equation. Utilizing the stability
criteria in [23] which solve the stability problem for (2-5), the behavior
of the corresponding partial differential equations can be deduced. Sections

2.1 and 2.2 introduce the types of partial differential equations to be

studied and sectlion 2.3 summarizes the results obtained in this investigation.

2.1. The Partial Diffevrential

Equation: ‘%% + A(x,D)u = £(u)
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Pao in [23] considered the abstract operator equation of the form
“i—)'d:tt + Au(t) = f(u) (t_>_0) (2-6)

where u(t) is a vector-valued function in a Hilbert space H, A is an
unbounded linear operator mapping part of H into H, and f is a nonlinear .
function én H into H. Sufficient conditions were established to ensure the
existence, uniqueness and stability of a solution of (2—6); These results
were applied to the Dirichlet boundary value problem in which (2-6) is an
abstract extension of the partial differential equation (2-1) with Dirichlet
boundary conditions, where (2-6) is formed by defining the appropriate domain,
D(A), characterized by the Dirichlet boundary conditions, and the appropriate
base Hilbert space, H. The solving of the stability problem for (2-6)
guarantees the existence and uniqueness of the solution of (2-1) which,
satisfies the Dirichlet boundary conditions. Furthermore, the stability of
the solution is guaranteed. Since for boundary conditions more general than
the Dirichlet problem the definition of the exact domain of the operator,
the base Hilbert space and the abstraet operator equation which satisfies
the conditions found in [23] and which would relate the abstract operator
equation to the general boundary value problem becomes much more difficult,
more general boundary value problems have not been discussed.

To overcome thils problem certain restrictions must be placed on the

partial differential operator A(x,D), the boundary operators B, (x,D) and Q.

3

With these restrictions placed on the system (A(x,D),{B,},2), as discussed

3

in Schechter [28] and [29], the proper abstract operator, exact domain, base

Hilbert space and abstract operator equation are defined so that the exist-

encg, uniqueness and stability is guaranteed for the newly formed operational

equation. These results are related to the partial differential equation
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with general boundary conditions and from the proper definition of the

domain of A and the properties of the solution of (2-6), the existence,

uniqueness and stability of the general boundary value problem is ensured.
In this investigation the first case studied is the linear partial

differential equation of the form
3-‘-‘3(1&21 + A(x,D)u(x,t) = 0 X €Q, t>0 (2-7)

with general boundary conditions

Bj(x;D)u(x;t) =0 x'ed, t>0 (0<j<m~1)

and initial condition

u(x,0) = uo(x)

where A(x,D) is a linear formal partial differential operator, u(x,t) is a

function defined on the subset 2 of the Euclidean n - space Rn, and B, (x,D)

3
are m - linear partial differential operators defined on the boundary, 99,

and are independent of time. Since the general boundary conditions for the
case n > 2 differ from the boundary conditions for the case n = 1, the two
cases are studied separately. Be defining the appropriate abstract operator
equation (2-6) with the correct base Hilbert space, abstract operator and
domain, D(A), and utilizing the results in [23] a stability theory is developed
in which the existence, uniqueness as well as the stability of the solution

to the general boundary value problem given in (2-7) is ensured. The cases

n>2and n = 1 are solved in a similar manner.

The next step is to consider the nonlinear problem

agéx,t) + Ax,D)ulx,t) = £(u) x €, t>0 (2-8)
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where A(x,D), the general boundary conditions, and initial function are
defined as in the linear case, and £(u) is a nonlinear function defined on

the appropriate function space. By utilizing the results for the linear case
the existence, uniqueness and stability of the solution to (2~8) is ensured

by additional assumptions on f(u). As in the linear problem, the cases n > 2
and n = 1 are treated separately. It is then shown that the Dirichlet problem
studied by Buis [7] is just a special case of the theory developed for the
general boundary vaiue problem since the restrictions imposed on Bj(x,D)
include the Dirichlet conditions as a subclass. Some applications of the

general boundary value problems ¢f (2-7) and (2-8) are considered which shows

how the stability theory can be applied to physical problems.

2.2. The Partial Differential Equation:

2
3—5 + a-%g + A(x,D)u = £(u)
% ¢

The next problem studied is the linear partial differential equation

Bzu(x,t) du(x,t)

7+ a T+ Ax,D)ulx,t) = 0 xe, t>0

ot (2-9)
with constant a > 0, and with general boundary conditions

Bj(x;D)u(x;t) =0 x'edQ, t>0 (0<j<m-1)

and initial function

u(x,0) = uo(x)

where A(x,D) is a linear formal partial differential operator. Here Q,



i3

j(x,D)}?;é are

defined as in the cases (2~7) and (2-8). By defining the appropriate base

the function u(x,t), the linear boundary operators {B

Hilbert space as a product space, Hl X HZ’ and abstract operator A, a 2 x 2
matrix with linear partial differential operator elements, with the correct
domain, D(A), an operator equation is formed and a stability criteriom is
deduced which ensures the existence, uniqueness and stability of the solution
to (2-9).

The next case considered is the nonlinear general boundary value

problem of the following form

2
_3__9%‘_':)_ + a .@.a“_g‘iﬁl + A(x,D)u(x,t) = £(u) xel, t>0 (2-10)
ot

with general boundary conditions. A(x,D), B, (x,D) and the initial value

3
function are defined as in the linear case and f(u) is a nonlinear function
defined on a function space. Stability results can be found by imposing
additional conditions on f(u) and the existence, uniqueness and stability

of the solution of (2~10) is guaranteed. The Dirichlet problem for an
equation of the form (2-10) as worked out by Pao [24] is shown to be a

special case of the problem (2-10) with general boundary conditions. Specific

examples are worked out to show how the theory can be applied to various

physical problems.

2.3. Summary of Results and Contributions to the Problem

The object of this study is to establigsh a stability theory so that
the solution to a given partial differential equation with general boundary
conditions not only exists and is unique but is also asymptotically stable or

stable. The contribution of this dissertation is the establishment of criteria
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for the existence, uniqueness and stability of the solutionsto a.large class
of partial differential equations with general boundary conditions and a
given initial value function. This contribution can be stated in two separate
stages in Chapters 6 and 7, and the results in these chapters are summarized

as follows:

(1) 1In Chapter 6, the object is to find sufficient conditions on the
system (A(x,D),{Bj},Q) to ensure the existence, uniqueness, asymptotic
stability and stability of the solution to the initial-general boundary wvalue

problem for the nonlinear partial differential equation

§E§%;£l + A(x,D)u(x,t) = £(u) xeQ, t>0
Bj(xLD)u(x}t) =0 x'ed, t>0  (0<j<m-1)

u(x,0) = uo(x)

where f£(u) = 0 gives the linear equation. First, for the linear case,
sufficient conditions are found to guarantee the existence and uniqueness

of the solution as well as the stability of the solution. These results are
given in theorems 6.2.1 and 6.3.1. Secondly, stability criteria are established
for the nonlinear case which extend the results of the linear case by placing
additional conditions on the nonlinear function f (u) and.guazantees the exist-
ence, uniqueness and stability of the solution to the nonlinear problem. These
results are given in theorems 6.41.2 and 6.42.1. In section 6.5, the

main idea is to show that 1f the general boundary conditions are restricted

to Dirichlet boundary conditions, then the existence, uniqueness and stability
of the s@lution is ensured if A(x,D) satisfies an integrai inequality. This
shows that the Dirichlet problem is a specilal case of the theory developed in

Chapter 6. These results are found in theorems 6.5.1 and 6.5.2. Finally,
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specific examples are considered which show that a large class of initial-
boundary value problems fits into the theory developed in Chapter 6. These

}.9).

examples are seen to satisfy the conditions placed on (A(x,D),{B

3

(i1) In Chapter 7, the main object is to find sufficient conditions

on the system (A(x,D),{B,},2) to ensure the existence, uniqueness, asymptotic

|
stability and stability of the solution to the following initial~boundary value .

problem,

2lu,e) |, duCkt)

atZ at

+ A(x,D)u(x,t) = f(u) xeQ, t>0

Bj(xlD)u(xlt) =0 x'e3Q, t>0 (0<j<m-1)

u(x,0) = uo(x)

where f(u) = 0 gives the linear case. First the linear problem is considered
and by forming the correct base Hilbert space, a product space, and an abstract
operator A, a 2 x 2 matrix with linear operator elements and an abstract

1)

operator equation, sufficient conditions are found on the system (A(x,D),{Bj
to ensure the existence, uniqueness and stability of the solution to the linear
equation. This result is found in theorem 7.1.1. Secondly, the nonlinear
problem is considered and stability criteria are formed by placing additional
assumptions on the nonlinear function f(u). This result is in theorem 7.2.1.

In section 7.31, a Dirichlet problem for a partial differential equation is
considered and shown to be a special case of the theory worked out in Chapter 7.
Examples are considered to show that the theory developed in Chapter 7 can

be applied to a large class of physical problems. These are found in examples

7.32.1 and 7.32.2.
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Fundamental to the study of the stability theory for Partial Dif. :r-—

In this chapter we

will give a brief discussion on the basic definitions and properties needed

in the remainder of this work.

There are many references which will give a

more complete discussion of the subject, among these are in [8], [9], [10]

and [35].

3.1.

Normed Spaces

A set X is a linear space over a field K if for any two elements

x,yeX, the sum X + y is defined as an element of X, and similarly for any

AeK, the scalar product Ax is defined and is an element of X.

satisfy the following conditions:

1) (x+y)+tz=x+ (y+ 2);

(A1) x+y =y + x;
(iii)
(iv) ( + u) x = Ax + ux;

v) X (x+y) =2dAx+ Ay;
(vi) Q) x = A(ux);

(vii) 1sx = x.

Let X be a linear space over the field of

Xy 5%

relation is satisfied

A.x, + A x, +

1%1 2%y cos T Anxn =0

for any x,yeX, and any A,uek

real or complex numbers.

The operations

there exists an element 0 in X such that for any xeX, O.x = 0;

The elements

,o0+3%X_ 0f X are gaid to be linearly independent when the following
2 n
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if and only 1if Al = Az m .. = An = 0., Otherwlse,the elements XysXgsee X

are linearly dependent.
A linear space X is called a normed linecar space if every element -eX
has associated with it a real number, denoted ]I x [I, called the norm of x,

K

satisfying the following conditions: for any x,yeX, and any AeK,

@ | x| 2o, Il'x | = 0 if and only if x = 0;
@y x|l = 1] x ]
@) | x4y [ < =11+ [yl

Qpe normed linear space is then denoted by (X,||=||) or simply by X. A
sequence {xn} in a normed linear space X is said to be a Cauchy sequence if
for any € > 0, there exists an intéger;uNke), such that for any n,m > N(e),
lem - xnll < g, If every Cauchy sequence in X converges to an element xeX,
then X is called a complete normed linear space or a Banach space. This

convergence is strong convergence and will be denoted by %gg X, = X, Or more

simply by

X is a real or complex Banach space depending on whether K is a real or complex
field. A set {x} in a normed linear space X is said tp be bounded if there
exists an M > 0 such that for any element of the set, we have [ x || <M

A complex linear space X is called a complex inner product space (or
a pre-Hilbert space) if there is defined on X x X a complex valued functionm,
denoted by (x,y), called the inner product of x aﬁd y, satisfying the follow-
ing properties: for any X,y,z € X and any A,pekK

1) (x4 uy,z) = xA(x,2) + uly,z);

(1i)  (x,y) = (v,x); (the bar denotes the complex conjugate)
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(4i1) (x,x) > 0 and (x,x) = 0 1if and only if x = Q.
A real linear space 1s called a real inner product space if the properties
(1),(11) ) (111) are satisfied, where (i1)' replaces (ii) above

4 Gy = 5.0,
An inner product space becomes a normed linear space by defining || x || =
(x,x)l/2 and the norm is said to be induced by the inner product (.,.). Every
normed linear space is not an inner product space. However, in a normed
limear space X (eompiex or real), if the norm ||.|| satisfies the parallelogram

law: for any x,yeX
2 2 2 2
[ x+yl1"+ [l x=-ylI"=2dl = [|7+ 5]

than an inner product can be defined so that X is an inner product space.
If an inner product space H (complex or real) is complete with respect to the
norm induced by the inner product (.,.), it is called a Hilbert space and denoted
by {H,(.,.)) or more simply by H. H is a real or complex Hilbert space accord-
ing to whether K is real or complex. A Hilbert space satisfies the following
two important properties;

(1) The inner product is sesqulilinear if H is a complex Hilbert space
and is bilinear if H is a real Hilbert space. By sesquilinearity we mean:

for any x,y,zeH, and any alsaz,ﬂl,ﬁzeK

(0 x +a, y, 2) = a,(x,2) + a,(y,2)

(x,8,y + B,2) = B, (x,5) + By(x,2),

1f Ei and Eé are replaced by Bl and 62 respectively then the inner product
is said to be bilinear.

(11) The inner product is continuous, in the sense that if
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x T X and Yo h Y as n > @

then we have

(x .y ) 3 G9) as 0> .

Let us consider the example LP(Q), (L < p < =), The set of all real-
valﬁed (or complex-valued) measurable functions f£(x) defined a.e. (almost
everywhere) on 2, whefe.Q is an open subset of Rn, such that If(x)lp is
Lebesque integrable over  constitutes a normed linear space Lp(ﬂ). It is
a linear space from the definition of sum and scalar product: Let f,geLp(Q),

o

AeK,
(f+g)(x) =£(x)+ g(x) and (Af)(x) = Af(x)
and the norm is defined by

= 1] pegy = UoleeoPaxi™?  (ax = ax

1v0 L) an) .

1P() is a Banach space whose elcments are equivalence classes of pth power
integrable functions, where two functions f and g are said to be equivalent
if £(x) = g(x) a.e. on Q. 1In particular, if p = 2,:L2(Q) is a Hilbert space

with the inner product and norm denoted by

: , 1/2
(£,8) = Jof(x) & (%) dx . 1 ||°.= (£,£)

Definition 3.1.1. Let X, = (5,[[+]]}) and X, = (,[[+]],), where X

is a linear space. The two norms are said to be equivalent 1f there exists

real nuwbers a,B with 0 < a < 8 < = such that for any xeX

«llx < s llye =11, .
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Definition 3.1.2. 1If Hl = (H’(°’°)l) and H2 = (H,(u,.)z) are two

inner product spaces then the inner products are equivalent if the norms they

induce are equivalent norms.

Let X be a normed linear space. An element xeX is said to be a limit
point of a set D€X if there exists a sequence of distinct elements {xn}CI)

such that

X

X as n -+ o,
n X '

The closure of a set D in X, denoted bynﬁ, is the set comprising D and all
of the limit points of D in X. A set D is said to be closed if D = D and
is dense in X if D = X. If X is complete then the closure of a set D in X
is a complete normed linear space, and we will say D is the completion of D

with respect to the norm on X.

3.2. Linear and Nonlinear Operators

Let X and Y be linear spaces over the same field of scalars K. Let
A be an operator (or function) which maps part of X into Y. The domain of A,
denoted by D(A), is the set of all xeX such that there exists a yeY where
Ax = y, The range of A, denoted by R(A), is the set {Ax|xeD(A)}. The null
space (or Kernel) of A, Ker(A) = {xsXIAx = 0}. A2 is called an extension of
A1 if D(Al)CD(AZ) and A,x = A x, for all x eD(Ai), If D(Al) = D(Az) and

1 2

Alx = A2x, for all xED(Al), then Al = Azo If the operator A is one-to-one,
then A is said to have an inverse and is denoted by Afl and defined by D(A_l) =

R(A), and

A”l(y) = X where yeD(A"l) and Ax = y.
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An operator A with domain, D(A), a linear subspace of X, and range, R(A),

in Y is called linear if for any x,yeD(A) and any a,BeK
A(ax + By) = o A(x) + B A(y)

and is called nonlinear if it is not linear,

If X and ¥ are normed linear spaces and T s a linear operator with
D(T)& X and R(T)eY, the following statements are equivalent:

(i) T is continuous on D(T);

(ii) T is bounded on D(T), i.e., there exists a real number M > 0,
such that for any x € D(T)

“Tx HY_S.M H 28 Hx‘
If T is bounded, the noxm of T is defined by

[l21] = suptllz = |1y | 1] x [l < 1, xedm3.

With this norm, the space of all bounded linear operators with domain X and
range in Y, denoted by L(X,Y), is a normed linear space if we define addition
of operators and scalar multiplication in the usual way. If in addition ¥
is a Banach space so is L(X,Y). I—l exists and is continuous if and only if
there exists an m > 0, such that for any xeD(T) ||T x ”Y >m|| x le.

Let X, Y be normed linear spaces on the same scalar field. Then the
product space X x Y is a normed linear space defined as the set of all ordered
pairs {x,y}, such that xeX, yeY with addition and scalar multiplication defined

by

{xl’yl} + {xzpyz} = {xl + Xypyy * yz}, a {x,y} = {ax,ay}



22

and with the nomm given by

1 Gy 1= dl = 112+ 11y D2

If X and Y are Banach spaces then so is X x Y. If T is a linear operator with
D(T)<X and R(T)cY, the graph of T, G(T), is the set of all ordered pairs
{x,Tx}, such that x€D(T). Since T is linear, G(T) is a linear subspace of

X x Y. A linear operator T is said to be closed in X if the graph, G(T), of

T is closed in X ® Y. An equivalent definition is the following: A linear
operator T is closed if and only if xneD(T), x i X, Txn ? y (a8 n + =) imply
xeD(T) and Tx = y. If T is closed then the inverse, T-l, if it exists, is
closed. A bounded linear operator need not be closed and 'a closed operator
need not be bounded. However, we have the following well known theorem,the

Banach Closed Graph Theorem.

Theorem 3.2.1. A closed linear operator T defined on a Banach space

X into a Banach space Y is continuous.

A linear operator T is said to be closable if there exists a linear
extension of Twhich is closed in X. If T is closable, there is a closed
operator T with G(f) = é?is. T is called the closure of T and is the smallest
closed extension of T, in the sense that any closea extension of T is also
an extension of T. A linear operator T is closable if and only if xnsD(T),

x % 0, and LESE (as n » ») imply that y = 0. In this case, the closure

¥
T of T can be defined as follows: xeD(T) if and only if there exists a sequence

{xn}C:D(T) such that x %% and %1@ Txn =y exiats;‘and.we;define Tz=y, It

can be proved that v is unique and T is closed.

Definition 3.2.1. Let H= (H,(.,.)) be & Hilbert space and T be an

operator with dense domain in H and range R(T)cH. The adjoint operator &f
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"8, denoted by S*, is defined as follows:

D(S¥*) = {yeHl there exists a y*eH, such that, for any xeD(S),

(Sx,y) = (x,y*)}
S*(y) = y* yeD(8¥*),

S* exists if and only if D(S) is dense in H, and S* is a closed linear
operator. S is symmetric 1if S£S*, that is, S* is an extension of S, and is
self-adjoint if S = 8%, Hence, a self-adjoint operator is closed.

Definition 3.2.2. Let X and Y be normed linear spaces. Suppose T

is a linear operator with domain in X and range in Y. T is completely
continuous (or compact) if for every bounded sequence {xn} in X, the sequence
{Txn} contains a subsequence converging to some limit in Y.

Definition 3.2.3. Let H, = (H,(.,.).) be a Hilbert space, and T a
1

1
linear operator with domain and range in Hl. T is said to be dissipative

,withfrespéét to the inner product of H, if for every xeD(T)

1

Re(‘l‘x,x)l < 0. N

T'is said to be strictly dissipative with respect to the inner product on H

if there exists a B > 0; such that for every xeD(T)
2
Re(szx)lf." B” ES Hl o

(The supremum of all B satisfying the inequality is called the dissipativity
constant .)

Let X,Y.pe normed linear spaces on the same scalar field of real or
éompiex numbers and let L(X,Y) be the class of all bounded linear operators

on X to Y. If Y is the real or complex number field topologized in the usual
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way, L(X,Y) is called the conjugate space (or dual space) of X and is denoted
by X*. An element of X* is called a functional. Thus X* is the set of all
continuous linear functionals on X. The pairing between any elements x of X

and f of X* is denoted by f£(x) or by <«f,x>. If we define the norm of feX* by

€]l = supl€Gd|  for || x [l <1

then X* is a Banach space.

If X is a Hilbert space, X* can be identified with X as can be seen
from the Riesz representation theorem (the identification is with H as an
abstract set).

Theorem 3.2.2. For any linear functional f on a Hilbert space

H= (H,(.,.)), there exists an element Vg € H, uniquely determined by the

functional £, such that

f(x) = (x,yf) for every x € H,
Moreover, ||f|]| = ||y|].

Corollary 3.2.1. Let H be a Hilbert space. Then the totality of

all bounded linear functionals H* on H constitutes also a Hilbert space, and
there is a norm preserving, one~to-one correspondence f <> Ve between H* and H.

We have introduced the concept of equivalent inner product which is
useful in the development of the stability theory in Chapter 4. The follow-
ing theorem which was formulated by P. Lax and A. N. Milgram plays an import-
ant role in the construction of an equivalent Iinner product. A proof can be
found in [35].

Theorem 3.2.3. (Lax~-Milgram). Let H be a Hilbert spdcee Let V(x,y)
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be a complex-valued functional defined on the product space H x H which
satisfies the conditions:

(i) Sesquilinearity, i.e.,

V(alxl + azxz,y) = alV(xl,y) + aZV(xz,y) and

V(x,B17; + Byy,) = By V(xy;) + 8, V(x,y,);

(1i) Boundedness, i.e., there exists a positive constant Yy such that

Vel <y 1 x 1y ]l

(iii) Positivity, i.e., there exists a positive constant § such that

vex 2 8 || x 17,

Then there exists a uniquely determined bounded linear operator S with a

bounded linear inverse S-l such that
Vix,y) = (x,Sy)H whenever x,ycH

and |[s|| < v, |[s7H] < &7h

Definition 3.2.4. A sequence {xn} in a normed linear space X is

said to converge weakly to an element xeX if %ig f(xn) = f(x), for every

feX*, This is denoted by w-%;g X = X It can be shown iIn this case that

x is uniquely determined. It should be noted that if X ~converges strongly

to x then X converges weakly to x. However, the converse is not true. We
know that if H is a Hilbert space, and the sequence {xn} of H converges weakly

to xeH and lim lenllu = || x IIH’ then {xn} converges strongly to x.
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We will now define vector valued functions, weak continuity and weak
differentiability.

Definition 3.2.5. Let u(t) be a vector valued function on [0,®) to

X. u(t) is said to be weakly continuous in t if <f,u(t)> is continuous for
each feX*. wu(t) is said to be weakly differentiable in t if <f,u(t)> is
differentiable for each feX*. If the derivative of <f,u(t)> has the form
<f,v(t)>, for each feX*, v(t) is the weak derivative of u(t) and we write

du(t)

T = v(t) weakly.

3.3. Spectral Theory and Semi-Groups

Let T be a linear operator with domain D(T) and range R(T) both
contalned in a normed linear space X. The set of complex numbers A for
which the linear operator (AI-T) has an inverse and the properties of this

inverse, if it exists, are called the spectral theory for the operator T.

Definition 3.3.1. The complex number Ao is in the resolvent set,
0(T), of T if R(AOI—T) is dense in X and AOI‘T has a continuous inverse,
(AOI-T)-l. The inverse (AOI---‘I.‘)“1 is denoted by R(AO;T) and is called the
resolvent of T at Ao' The spectrum of T,0(T), is the set of all complex
numbers A not in p(T).

Theorem 3.3.1. Let X be a Banach space and T a closed linear operator

with D(T) and R(T) both in X. Then for any Aep(T); the resolvent R(A;T) is
an everywhere defined continuous linear operator. The resolvent set, p(T), of
T is an open set of the complex plane.

This theorem tells us that for any Aep(T), R(AI-T) = D(RA;T)) = X,
and the spectrum, o(T), of T is a closed get of the complex plane. Tor a

more detailed discussion of spectral theory see [14] and [35].
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In the study of stability theory for operational differential
equations found in Pao [23], much use was made of the Semi-group theory of
Yosida and Hille-Phillips in [35] and [14], respectively. The basic definitions
and properties will be defined here. Look in the above books for a more

detailed duscussion.

Definition 3.3.2. For each te[0,=), let TteL(X,X)a The family
{Ttlt.i 0}€ L(X,X) is called a strongly continuous semi-group of class C,

(or a semi~group of class Co) if the following conditions hold:

(1) TSTt =T, 4 ¢ for s,t>0;
(ii) To =1 (I is the identity operator);
(iii) %$¥0Ttx = Ttox for any toip and any xeX.

If {Tthzo} is a semi-group, its norm satisfies:

there exists an M>1 and a B<=, such that for any t>0

[T, l] < me.
If B can be taken to be zero, then {Ttlpzp} is said to be an equibounded semi-
group of class Co; if in addition M = 1, if is called a contraction semi-group
of class Co° If B can be taken as B < O, {Ttltzﬂ} is a negative semi-group
of class Co and 1f, in addition, M = 1, it 1s called a negative contraction
semi-~group of class Co'

Definition 3.3.3, The infinitesimal generator, A, of the semi-group

{Tthzo} is defined by

Ax = &ig Thx—x
h

for all xeX such that the limit exists.
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The infinitesimal generatoé, A, of a semi-group of class.Co has the
~ following properties; )

(1) A is a closed linear operator with domain, D(A), dense in X
and the zero vector D eD(A). ’

(1i) if xeD(A),4th;n for any t>0, TtxeD(A) and

d N o
3F (Ttx).~ ATtx TtAx

where d (T x) is defined
EE t. .

a_ = h{0 - ~
3t (LX) h

for xeX, if the limit exists.

BL, then all A with Re(d) > B is in the resolvent

(ii1) 1If []TtH < Me
set, p(A), of A,

The following result known as the ilille-Yosida theorem gives necessary
and sufficient conditions for a closed linear operator to be the infinitcsimal

generator of a seml-group.

Theorcm 3.3.2. Let A be a closed lincar operator with domain, D(A),

dense in X and range, R(4A), in X. Then A is the infinitesimal generator of

a semi-group {Tthgp} satisfying the condition

Bt

HT,;H < Me with M > 1 and B < o

if and only if there exists real numbers M and § as above such that for every

dnteger n > B, ncp(A) and

13

I!R(n;A)mll [l(nImA)_mll <M w&}ay m(me=1,2,...).

(
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We have already introduced the concept of dissipative operator
which gives a more aesthetic and useful result in the study of the stability
theory of the abstract operator equation

du(t)

at +Au(t) = 0,

The result is due to Phillips [27]

Theorem 3,3.3. Let A be a linear operator with domain, D(A), dense

in H and range, R(A), in H. Then~A is the infinitesimal generator of a con-
traction semi-group of class C0 in H if and only if -A is dissipative with
respect to the inner product on H and R(I+A) = H; and-A is the infinitesimal
generator of a negative contraction semi-group of class Co in H if and only
if -A is strictly dissipative with respect to the inner product on H and

R((1-B)I+A) = H, where B is the constant in definition 3.2.3,

3.4. Distributions and Function Spaces

In the study of stability theory for Partial Differential Equations,
we need to examine the function spaces which define the domain of an
infinitesimal generator, A, of a contraction semi-group satisfying the

operator equation

dalt) 4 pu(e)= 0,

To do this, we must first introduce the concept of Distributions and Fourier
Transformations. Next, we will discuss the Sobolev spaces Hm(Q), and the
boundary spaces H° (). This will lead to the 'trace theorems' or what we
mean by the restrictions of functions on the boundary, 9. .Finally, we will

discuss the function space Hgm(ﬂ) which is needed for the definition of the



domain of the operator A.

3.41. Distributions

In this secticn we will define and gilve sone Sasic properties of
distributions. For a more complete discussion seec Horvath [15], Treves [32]
and Edwards [10]. Firsg, we will use the following notations: x = (xl,xz,
...,xn) eRn, the EuclideaP\n~space, 2 is an open subset of R". @ denotes the

% N n
closure of @ in R, and dx = dxl...dxn, the usual Lebesque measure.

¢ 0 (0. 9 0O a__yo
D = (Bx )1 (Bx )72 . (ax n
1l 2 . o

. , 0 o
where o = (al,az,...,an) eR with non-negative integer components and

lal = ul + az + ese °F an. e

Definition 3.41.1. A real-valued function, q(x), defined on a linear

space X is called a semi-norm on X, if the following conditions are satisfieds

(1) q(x+y) < qx) +qly) ;
(ii) q(ox) = ]a! q(x).
We can see directly‘thif5ﬁTx) > 0 and q(05~= 0.
Let £(x) be a complex~valued (or recal-valued) function defined on €.
The -support of £, denoted by supp(f), is the smallest closed set containing
the set {xcﬂlf(x) # 0} (or eguiValcntly, the smallest closed subset of @ out=
side of which f vanishes identilcally).

Definition 3.41.2. By Cm(Q), 0 < m < «, ve mean the set of all

complev—-valuad (or real-valued) functions defined in  which have continuous
partial derivatives of order up to and including m (of order < « if m = ©),

CS () is the set of all functions of Cm(Q) with compact support, that is

30
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those functions of Cm(ﬁ) whose supports are compact subsets of 2 (a subset
of R" is compact if and only if it is closed and bounded). If 0 < m < =,

the set Cm(Q) or Cz (@) is a linear space defined by

(fl + f2) (x) = fl(x) + fz(x), (af)(x) = af(x).

Ck(ﬁ), 0 < k < », is the set of all functions (complex or real-valued),
such that for any xeQ, and for any a,la] < k(]a] < k if k = =) D*f(x) exists
and D'f has a continuous extension to §.

We will now define a topology on C:(Q), Using the notation of Treves,

we let K be any compact subset of {. Then C:(K) is defined by

C:(K) = {¢€C:(§2)|Supp¢cK}.

We define on C:(K) a family of semi-norms

qp(¢) = su 0% (x)] .

[aT < py,xek
This makes C:(K) a Frechet space (metrizable and complete). Then, if we
let Kn be an increasing sequence of compact sets such that KH:Q’ andlﬁKn = q,
this defines the inductive limit topology on C:(Q), where a set 0 is open in
this topology if and only if OﬂC:(K) is an open set, for all K, 1 < K < =,
Topologized in this way, C:(Q) is a locally convex linear topological space.
The convergence lim ¢n = ¢ in C:(Q) means that the following two conditions
n>o
are satisfied:
(1) There exists a compact subset KEQ such that supp(¢n)cK (n=1,2,004)-
(ii) For any differential operator Da, the sequence Da¢n(x) converges

to Da¢(x) uniformly on K.

Definition 3.41.3. A linear functional defined and continuous on
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C:(Q) is called a distribution or a generalized function in . We denote
by D'(R) the set of all distributions in Q. D'(Q) is the dual space (or
conjugate space) of C:(Q), where C:(Q) is called the space of testing
functions. For any distribution feD'(R), and any testing function ¢8C:(Q),

we denote by <f,¢> the value of f on ¢. D'(R) is a linear space by
<f + g,¢> = <f,> + €g,¢>, and <af ,¢> = a<f,¢>.

We have two theorems concerning the criteria for a linear functional to be
a distribution.

Theorem 3,41.1, A linear functional f defined on C:(Q) is a distri=

bution in € if and only if f is bounded on every bounded set of C:(Q) (in
the inductive limit topology of C:(Q)),

Theorem 3.41.2. A linear functional f defined on C:(Q) is a dishkri-

bution in § if and only if ff{satisfies the condition: to every compact
subset K of @, there corresponds a positive constant C and a positive

integer m such that for any ¢€CZ(Q),

|<£,4>] < C su 0% )|,

IaT < m,xeK

Definition 3.41.4. The derivative of a distribution f is defined

to be the element of D'(R), denoted by 3f , satisfying for any ¢eCZ(9)
59X
i

< %f—-, P> = - < f,%i->
* *

Thus, a distribution in @ is infinitely differentiable and p* f #s the

element in D'(R) defined by: £for any ¢eCZ(Q)

o]
< p* £, > = (~-1) <f, Da¢ >,
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We have the following properties of distributions:

1) C:(Q)CLZ(Q)CD'(Q);each space is dense in the following where
for any ueCZ(Q), u is associated with the distribution (¢ ~ (u,¢)o), where
(°")o is the Lz— inner product.

(ii) For any ¢€C:(Q) and £ € D'(?), we define the product ¢f

0
by: for any ueCo(n)

< ¢f,u > = < £,6u >,

3.42. Fourier Transform Space of Tempered Distributions

In this section, we will define the Fourier Transform on the space
KUJS and extend this to the space LZ(RP). Then we will define the Fourier
Transform on the space of tempered distributions. We need this for the
definition of the spaces #° (R™) and H°(30). A more detailed discussion is
found in Yosida [35] and Treves [32].

Definition 3.42.1. Let K(Rn) be the set of all functions ¢eCw(Rn)

such that for any a,BeRn with non-negative integer components

TP IxBDa¢(X)|< w
n
xeR

8 B B2 Bn n
where x = X)Xy Teeex The topology on S(R ) is defined by

the family of semi-norms qa8(¢> = sup ]xBDu¢(x)l. With this topology S(Rn)

xeR™
is a locally convex linear topological space whose elements are functions said
to be rapidly decreasing at «.

Definition 3.42.2. The Fourier Transform of u ¢ B(Rn)'is the function
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of gsRn,

‘i(X,E)

1 e u(x)dx

n‘.n
2 R
(2m)

Where (x,§) = x1€1 + ng + oee. xngn. We denote it by u(E). The Fourier

2
Transform, FT, is an isomorphism of S(Rn) onto SCRn) with the given topology
on J(Rn), and the inverse mapping is given by

= 1 i

FT: §@Mag» —E—1 ot ™fa

- R
(2m)?
An important property of the Fourier Transform is giveﬁ by the following
. 2

Plancheral-Parseval theorem, which shows that FT preserves the L - inner

product and norm on X(Rn).

Theorem 3.42.1. (Plancheral-Parseval) Let ¢,V¥ ekﬂfﬁ. Then

~ —_R—
@) [ ¢ V&) dx = [ e@pE) & s
R R
. 2 y 2
i) [ 47 dx = [ lee)| e,
R R

Since S(Rn) is dense in Lz(Rn), the Fourier Transform can be extended
by continuity to an isometry, denoted by FT, from LZ(Rn) onto LZ(RP), We
denote by FT the inverse Fourier Transform. We can see this is an isometry
by theorem 3.42.1. This gives us the following result,

Theorem 3.42.2. Let u,v € Lz(Rn). Then we have Parseval's formula,

A A

(usv)o = (U,V)O

and Plancheral’s formula, Ilullo = IILIIO,

consider the following diagram



35

c BN SR e ¢ R
o
9 9 1

D' RM)<2Y4 ®M)<> [C R ]
These natural injections are all continuous and each space is dense in the
following space. Hence, we can regard 3'(Rn), the dual space of S(Rn), as
a space of distributions. We say that %’(Rn) is the space of tempered
distributions. A characterization of a tempered distribution is found in
the following theorem.

Theorem 3.42.3. A distribution in R" is a tempered distribution if

and only if it is a finite sum of derivatives of continuous functions, grow-
ing at = slower than some polynomial.

Definition 3.42.3. The Fourier Transform on 3'(Rn), is the transpose

of the continuous linear map, FT, which maps u € 3(Rn) into the function of

£eR™

1 fRn e~i(x’gb(x) dx.

(2m)

Nols

The transpose of FT, tF'I', is the element of 3'(Rn) defined by the following:

for any u € 3'(Rn) and any ¢ € &(Rn),
< YFT(u),4 > = <u,FI($) >.

This defines the Fourier Transform on 3'(Rn), which we will denote by FT,
which extends the Fourier Transform in the space of functions Lz(Rn). We
have the following theorem by Treves [32].

Theorem 3.42.4. The Fourier Transform is an isomorphism from the

linear topological space 'R onto $'®R™).
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3.43. The Sobolev Spaces, Hm(Q), m integer > 0

We will first consider 2 and place the following restrictions on £
(which will hold except when otherwise stated, i.e., 2 = Rn).
Q is a bounded domain in R'. The boundary, denoted by 3, is an

infinitely differentiable manifold of dimension (n-1), (3-1)

§ being locally on one side of 9§, i.e., we consiaer Qa variety with bound-
ary of class ¢ and Q locally on one side of 3%.
We denote by d(3Q) the surface measure on 99 induced by x. We will
now give a brief discussion on what is meant by (3-1). Refer to Auslander [4]
and Auslander, Mackensie [5] for a more thorough discussion of the subject.
Let @ be an open subset of R". The 30 is a surface which can be
defined by a finite number of functions fi(xl’XZ""’Xn) (1 <1 < 8), where

for any 1, 1 < i <s, f, € Cm(Rn) and 3 satisfies

i

0 = { xaﬁlfl(x) = ... =f_(x) =0}

On 32 we assign the topology induced on it by the topology of R". Also, on
30 we assume there are no singularities, i.e., for any xed, there exists a

neighborhood, N(x), such that for every xeN(x)N3Q

[t 3f. |
oLy

|
|

9%
det R

We can state the following more aesthetic equivalent definition of (3-1),
where for simplification we will define CW(A,B) as the set {ueCm(A)ID(u)EA,

R(u)&B}:
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1

(1) For any xedR, there exist an open subset WeR™ , and there

exists an neCw(W,Rn), n is one-to-one, such that xen(W) = U, an open subset

of 9Q. Also, there exists an open subset OCRn, and there exists a ;eCW(O,Rnwl

s
such that UcO and ;en is the identity on W (see figure 3.1).

(i1) Each pair (n,W) defines a coordinate neighborhood on 39, at
each point of 3Q2. We have the following compatability condition, 4f (na’wa)
and (nB’WB) are any two coordinate neighborhoods on 3Q such that na(WaNW

-1 w -1 -1
"B(WB) # ¢ then Ny * NgeC (nB (Ulnuz), U (UanZ))~

RZ
Figure 3.1 Figure 3.2
Essentially what we mean is that 9Q is an "infinitely' smooth surface, and
which locally looks like Rn‘l.
Q is iocally on one side of the boundary, oR, means that for any
xedQ, there exists a neighborhood of x,N(x), such that N(xNIQ lies entirely
on one side of 30, i.e., 38 we traverse N(x)3Q we see that N(x)fa‘lies

entirely to our left (or right). The figure below, figure 3.3, is an example

6f what can not occur, that is x has 9 on both sides of it.

Figure 3.3.
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We are now ready to define the Sobolev spaces, I-lm(ﬂ). See Lioms,
Magenes [18] and Yosida [35] for more discussion on the subject. Let 2 be

an open subset of the Euclidean space Rn, and m & nonnegative integer, then
B (2) = {ueD' @) |p%uer?(@), for all a,|a| < m}. (3-2)
If we define for any u,veHm(Q)
w@v) = [ [y 0%) ) @%) x)dx
[a|<m
1

1
and el = @w? = (! |10 [?) 2

al<m

then Hm(S)) becomes a Hilbert space. We note that convergence in Hm(ﬂ), ox

u -+ u ag n > @

is equivalent to the following: for any c,lul < m,

Du = Du as n > ®,

H'“(n) has the following preoperties, which can be found in Lions and Magsmes
[18].

@ ®°@) = LZ(Q), which motivates the denoting of the inner
product in LZ(Q) as (°’°)o°

m m

(11) 1f®, > m, > O, then H l(ﬂ)c:H 2(52), and the identity

1 2
injection is completely comtinucus.

(111) 1If Q satisfies (3-1), end ueHm(Q), for some integer m*0,
and 1f aeR”, such that |a] = k < m then DauaHm_k(Q)g

(iv) 1f Q zatiasfies (3-1), then Cw(?f) is dense in Hm(g)@
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It can be shown that C:(ﬂ) is not dense in Hm(ﬂ) (except for
m = (), but is a proper subspace of Hm(Q), motivating the definition of

HZ(Q),'as the closure of C:(Q) in the H® - norm.

3.44, The Boundary Spaces HS(BQ), s >0

In this section, we will define the boundary space 1% (39) and
give some of its properties. Lions and Magenes in [18], Schechter in [28]
give a more complete discussion of HS(BQ). Before defining this space, we
must define the space Hs(Rn). Let s be any nonnegative resl ngmber, then

Hs(Rn) is defined as folléws:

8
PR = {ueSEN | A + 8|2 wE)er @}

where 3'(Rn) is the space of tempered distributions and w(f) is the Fourier

Transform of u. For any u,?eHS(Rn), if we define

(u,V)HS(Rn) ) fRn 1+ lilz)s ;(E);(z)d

8

and [ u] ] - 2,2
e = 1@+ [E]D7 u@ || 2

then HB(Rn) becomes & Hilbert space. Convergence in Hs(Rp) means that

v u as n+
n Hs(Rn)

if and only 1if

s £
a+ e u@ ;o a+leh e msave

L™(R")

It 1g shown in Treves [32] that C:(Rn) is dense in HS(Rn)@
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We are now ready to define the boundary space Hs(aﬂ)e From our
assumption on Q of (3-1) we can find a finite family of bounded open subsets
of Rn, Ui( 1<i<N), covering the 32 such that for every integer i,1<i<N, there
exists an infinitely differentiable mapping, Gi’ which maps Ui onto the

sphere o = {x'e¢R"||x'}{<1}, in such a way that

- = Lt e b npr 4t
ei(U£19) o, = {x'eR|x eo,xn>0}

+

= = [T opPt] ¢ LI
6,(U3Q) =20 | = {x'eR | x eo,x = 0}.

See figure 3.4.

figure 8.4

We also note that 0
1

1 is invertible, that is, if ei(x) = y. then

e;l(y) = %, and 9; is also infinitely differentiable and maps ¢ onto Ui’ and
alo 4 onto Uiﬂaﬂ. In addition, the following compatability relaticns sre

true: if UiﬂUj # ¢, then there exists a homeomorphism, Jij’ infinitely
differentiable and with positive Jacobian (so we don't have any singular
points, alsc changing from positive to negative Jacobian changes the orien-

tation of the local coordinate system). Jij satisfies the following property;

6.{UnU
Jij maps ei(Uint) onto j( N j) in such a way that for any stint

ej(x) = Jij(ei(x))s
See figure 3.2.

Let ay be a partition of unity on 30 with reaspect to the covering
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{Ufﬁaﬂ}gal. For & complete discussion of partition of unity see Treves

[32]. The family of functions, {ai}, satisfy the followling properties,

(1) for amy 1,1<icN, a.eC” (392);

(ii) for eny i,1<i<N, @y has compact support in Ufﬁan;

(111) for any 1,1<1<N, and any xe3Q, ai(x) > 0;

(iv) for any xe3Q, ngl ai(x) = 1,
Note that c”(an) is the set of all infinitely differentiable functions defined
on 9f.

Now if u is a real or complex-valued function defined on 3Q (for

instance usLl(aﬂ) then we can decompose u (as a sum of Ll functions),
N
u = Zial (aiu)

(this means that for any xe3Q, u(x) = Zi ai(x)u(x))e We note here that for

any 1,1<i<N, a_.u has compact support in U f9l. Now we can define a mapping

i 1

*
ei (aiu) from ala+ into the scalar field K of real or complex numbers, in

the following manner: for any y'ealo+

0, (W' = v (") =a @7 MUE ).

It can be seen that 6: (aiu) has compact support in 310+, and thus 6: (aiu)
can be considered as being defined in the Euclidean space Rnwl, as the ex-
tension by zero outside of 310+,

Definition 3.44.1. Let yeRnnl, then

6: (miu)(y) = é (aiu)(agl(y)) for yed

1%+

o elsewvhere

The following important theorem is due to Lions, Magenes [18],
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®
Theorem 3.44.1. The linear mapping u - ¢i (aiu) is continuous
1, n-1

from Ll(aﬂ) into L"(R™ 7) and is also centinuous from c”(an) into Cw(Rn_l)9

and can be extended to a continuous linear mapping from D' (3R) onto D“(Rn—l)
(verified by duality).
We will now define the boundary space HS(BQ).

Definition 3.44.2. Let 8 be any nonnegative veal number.

Then

22 (R) = {ueD'(39)l¢: (o u) € @y, 1<i<n}

This algebraic definition is independent of local coordinates {(ei’Ui)}§=l

N
and partition of unity {ai}i=1°

Let u,veHs(aﬂ), If we define

N * *
(u,v) = )iny O (@,u),0, (a,v)) -
HS(BQ) i=1 i V4 i i Hs(Rn l)
1
and [ u] ] = <> = [ZN, ||¢* (a u)||2 _ ]2
HS(BQ) Hs(an) i=1 i Vi Hs(Rn l)

H® (302) becomes a Hilbert space., We will denote the norm on HB(BQ) by <>

Also, it can be shown that the various norms which depend on {6 ,ai} are

1Yy

all equivalemt. Convergence in us(an) meang that

u ;* u a8 n > ©
R ¢ 1))

if and only 1if for any 1,1<i<N,

% *
6i (aiun) *#Rnwl) ¢1 (aiu) as n + o,

1% (

HS(QQ) has the following preperties, verified in Lione and Magenes [18],

1) c”(an) is dense in Hs(aﬂ)9 for any nonnegative real number s.
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(ii) If Q satisfies (3-1), and if s o are real numbers such

1°8
S s 8

that sl>8230 then H 1(99);3:2(39) and the identity injection from H 1(39)

into H™ (39) is completely continuous.

3.45. The Trace Theorems

In this section, we will briefly discuss the trace theorems and
justify the definition of the trace of a function on the boundary and the
function spaces in which they are defined. The methods we will use are more
fully discussed in Peetre [26], Schechter [28] and Agmon-Douglis-Nirenberg
[2]. For a different approach yielding the same results see Lions and
Magenes [18]. Also, for a discussion of the trace of a function on the
boundary see Volevich—~Paneyakh [33].

The following two theorems which are the basic results for the
trace theorems are proved in Peetre [26] and Schechter [28].

Theorem 3.45.1. Let 9 satisfy (3-1) and m be any positive

integer. If usdwdi) and you dencotes the restriction of u to the boundary,
392, then we have the following inequality. There exists a constant, Km,

independent of u, such that,

VoWpg < Kyllully
2

m-1

Thus, since'Cm(ﬁ) iz dense in Hm(ﬂ), and Cw(BQ) is dense in H 2 (39), the

mapping

(u> vy u): C @ ~+ C (39)

can be extended by continuliity to a continuous linear mapping which we dencte

by Yo such that,



m-1

(@ >y w: @ »H 2 30).

This means that the trace of an element ueHm(Q), denoted by Y, Us can be
m-1 m-1
considered as an element in H 2 (3Q). Conversely, for any veH 2 (3Q),
m-1
there exists a ueHm(Q) such that v = you, or v is the trace of u in H 2(3Q),

Remark 3.45.1. Another way to look at the trace of an element

is as follows: if usHm(Q), then for any sequence uheCm(E), such that

u as n > o

u —p
g @)

and if Yol is the restriction of u to the boundary, 3%,

then

u - v as n + «
Yo n m1

H 2(3%)
m-1

where v, denoted by YU is the trace of u in H 2(39).

We have just defined what we mean by the trace, YoUs of an element
ueH (). Now we will conmsider the distributional derivative,'Dau, and
define what we mean by the trace of this function on the boundary.

Theorem 3.45.2. Let 9 satisfy (3~1) and m be any positive integer.

If uedmdi), and Dau is the distributional derivative of u of order la] " g
k £ m~1 and yo(Dau) denotes the restriction of p%u to the boundary, 9R, then
we have the following inequality. There exists & constant, Km, independent

of u, such that

o
< YO(D u) >m”kﬁl'§ K;nllullme
2
m~k=1
Thus, since Cw(ﬁ) is dense in Hm(ﬂ) and c“(an) is dense in H 2(89)9 the

44
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mapping
(v v @) @ »C (@)

can be extended by continuity to a continuous linear mapping which we denote

by yoDa such that
m=k-1
{u ~» yo(Dau)): Hm(ﬂ) -+ H 2(80),

This means that if usHm(Q), since D%ueH (9), then the trace, y (D u), of

m-k~-1
D u can be considered as an element in H 2(39). Conversely, for any
m-k-1
veH (an), there exists a usHm(Q) such that v = Yo (D u), or v is the trace

a m-k-~1
of Duin H 2(39).

Remark 3.45.2, As in remark 3.45.1, we can consider the trace of

o ) 0 ——
D u in the following way: 1f ueHm(Q), then for any sequence uneC () such

that

u &8 n > »

u am—
B (0))
and if Yo(Daun) is the restriction of Daun to the boundary, 3Q, then

(D u ) v asn-—> ®

—kwl
i 2(30)
m-k-1
where v, denoted by yo(Dau), is the trace of D u in H 2(39).
In studying the Dirichlet problem we need to consider the normal
derivatives to the boundary, (gngj, 0 < j <m1, where n is the normal to the
on

boundary, interior to the surface. The following result by Lions and Magenes

[18] shows how we define (g_;j

Theorem 3.45.3. Let @ satisfy (3-1) and m be any positive integer.
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Then the mapping

@+ (@)%, Eu,...," b @ » 1"

can be extended by continuity to a continuous linear mapping denoted by

m-1
(u > {(—-—) u, (a )u,o..,(an) ™13y 5¥™@) - T E
j=0

2m=j-~ 1(89)

Conversely, there exists a continuous linear mapping denoted by

m-1 2m—-j-1
(v svyseee,vy 4} > u)s i H 5(3%) + B (9)
j=0
such that for any set of functions, {vj}m—l, where vjeﬂzm 3- 1(39), there
j=0
exists a ueHzm(Q), such that (%;)ju = vj, 0 <3 <m1l.

Remark 3.45.3. If ustm(ﬂ), and for any sequence unecm(ﬁ), such

that

u 2m u as n > ®
)

3 .j. @ th
where (55) uneC (3Q) is the j -~ normal derivative at the boundary, 39,

then

( )j - v as n > @;
n 2m-J-l(aQ)

and if v is denoted by (%;)ju, then the jth -~ normal derivative is considered

2m~j-1

as an element of the boundary space H (aQ)

Now let us consider, for ueCm(ﬁ), the linear formal partial

differential boundary operator
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, h
B, (x,D)u(x) ) e byp (Y (Dulx)  xedQ, 0<j<m-1
=]

where heR" with nonnegative integer components, b h(x)eCm(aSZ), m 5 is the

3

order of Bj’ m, < 2m~1 and yo(Dhu) is the restriction of Dhu on 3. Unless

3

otherwise stated the boundary operator, B, (x,D)u, will be denoted by B, u.

k| J
We have the following theorem due to Gerd Grebb [12], which will explain
what is meant by the trace of 'Bju on the boundary, 9Q.

Theorem 3.45.4. Let Q satisfy (3-1), ueCm(S_Z-), m any positive integer

and B,u defined abeove. Then there exists a constant, Km’ independent of u

h
such that

< Bju >2m-mj-='_]_._ = Kml |l IZm'

2
Hence, the mapping

(u > Byu): @ - )

can be extended by continuity to a continuous linear mapping denoted by

Bj , such that

(@ + B,u): Hzm(Q) - Hzm"mj'—zl-(aa).

3

Remark 3.45.4. Another equivalent way to look at the trace of

Bju on 32 is the following: Let ueHzm(Q). 1f unsCm(-ﬁ), such that
u o, u as n+ o
()

and since Bjunec”(asz), then

B.u ——— ¥ as n >
in Hmej—%(aQ) 3



2m-m, ~1

where vj is denoted by Bju and is in H i ?(BQ)s Hence, the trace,

B,u, of u can be considered as an element of H

g 39).

dm~ms-1]
] 2
We have shown that for ueHzm(ﬂ), B

i
as an element of Hzm—mjﬁ%(aﬂ). In this work we are interested in the bound-

u(0<j<m~1) can be considered

ary conditions: for ustm(Q),

Bju =0 on 3 (0<j<m-1) (3-3)

The following result will explain it's meaning.

Theorem 3.45.5. Let @ satisfy (3~1), ueCw(ﬁ) and Bj be the linear

boundary operator defined above. For the mapping

B, :C (@) 3u > 0eC (3%)

the extension is a continuous linear map denoted by

B 12 (@) 3u - Oeﬂzm_mj"%-(aﬂ)

This shows that for ueHzm(Q), the boundary condition (3-3) means

that Bju is the zero element in Hzm-mjﬁ%(aﬂ), which we will denote by

< Bju >2m-mjfl =

2

0 (0_<_j_<_m"'1) ®
Note that the kernel of the map B, is defined as

3

Ker Bj = {ustm(Q)|< Bju >2m“mjﬁl = 0} ,

2

Remark 3.45.5. We restrict our discussion to the Dirichlet

problem, defined by: for any ueC (@), and any Xedf

48



Edum = 0 (0<j<m-1).

From the results above we see the generalized Dirichlet boundary conditions

have the following form: for any j(0<j<m~1), the linear mapping

(-a—-)j: ¢ @)3u > 0eC (3%)
on

has an extension which we denote by (%;9j, such that

-

an

2m--1

y: 1% @)su > oen 2

(32).

Thus the generalized Dirichlet problem can be written

5 = 0 (0<j<m~1)
2m=§-1
2

< 3

2n-3-1
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where (%E)Ju is the zero element in H 2(89). Note the Kernel of the map

m-1
n H
j=0

2m-3-1

2 (3%)

@ > (G%,....&9" b P @su > (0,...,00¢
is defined by

Jd .0 9 m-1 2m IR 2m m
Ker {(-5;) seees (GR) } = {ueH (sz)|<(-5~5) u> = 0,0<j<m~1} = H (Q)nuo(sz).

This follows directly from a theorem found in Lions and Magenes [18] which

characterizes Hz(n);
o m SR I - .
o(Q) = {ueH (Q)|<(an) u>=_ . =0, 0<j<m-1},
3.46. The Spaces Him(g),ﬁg(ﬂ)

In our study of the stability problem for the abstract operator

equation
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dié‘til + Au(t) = £(u)

we need to define explicitly the @omain of the operator A, so that it
satisfies the conditions of being dense in the base Hilbert space, H, and

it can be utilized in solving the partial differential equation

§2§§le + A(x,D)u(x,t) = fu).

In this section, we will define the spaces H;m(ﬂ) and HE(Q) which are vital
to the definition of D(A).

First, we must define the function spaces Cgm(ﬂ) and C;(Q),
where B = {Bj}?;é is the system of boundary operators defined in 3.45. Let
Q satisfy (3-1).

cgm(n) = {ueczm(?z')lsj (x,D)u = 0 on 32, (0<j<m-1)}
cy@) = {uec°°(Ez‘)|fsj (x,D)u = 0 on 30, (0<j<m-1)}

The following definitions are equivalent:

@ @) = (@< Buc,

2

0 (0<j<m=1)};

(1) Hgm(ﬂ) = Ker {B_,By,...,B .}

where
1

- _
{B_,B,.0.,B .} @) +» 1 O -;-(asz);

j=0
(1411) H;m(ﬂ) = completion of CZ(Q) in the H2m - norm.

If we place restrictions on (A(x,D),{Bj},Q) of A(x,D) being 'properly

elliptic’, and {Bj} being a 'normal system' and satisfying the 'comple-

mentary condition' found in section (5-21), then (iii) is equivalent to

(iv) below,
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(iv) Hgm(ﬂ) = completion of Cém(ﬂ) in the H2m -~ norm.

Note that Lions and Magenes [18], use definitions (1), (i1), and
(iii) and Agmon [1], Schechter [28] and Friedman [11l] uses definition (iv).
The equividlence of (1), (ii), and (iii) follows directly from the definition
of Bj’ theorem 3.45.4.and remarks 3.45.4 and 3.45.5. The proof of the
equivalence of (iii) and (iv) is left to the Appendix.

We will now define Hz(ﬂ), as the completion of C;(Q) in the

I{m - NOXM.

Remark 3.46.1. From [18] we can characterize the spaces H?(Q)

with the following equivalent definition,

= 0, for all B, such that m, <m}

m
HB(Q) = {ueHm(9)|< Bju > 3 5

m-m -1
2

where {Bj}?;é is the system of boundary operators defined in section 3.45.

Remark 3.46.2. If we restrict {B }m~1 to be the Dirichlet bound-
j 3=0

ary operators,

= (3] -
By G (0<j<m~1)

then we have the definition for the space Hgm(ﬂ), which can be feund in

Friedman [11]), and Dunford-Schwartz [9],

H2"(2) = {ueh”™ (@) |< &) > puege1 ™ O (0<j<m-1)}
2

= B2 @ @)

and the space H;(Q), gince the order of Bj is mj = j < m for every j,0<j<m~1,

iy (@) = {ueﬁm(ﬂ)k(%r—l-)ju > 0, (0<j<m-1)}

mj-1 -

m
= HO(Q)Q
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4,0. STABILITY THEORY FOR OPERATOR

DIFFERENTTAL EQUATIONS IN A REAL HILBERT SPACE

It was shown in Chapter 2 that certain linear partial differ-
ential equations can be placed in the form of an operator differential
equation, see (4-1) below, and the problem of the existence, uniqueness
and stability of the solution to the partial differential equation can be
solved by considering the related stability problem for the operator
equation (4~1). 1In this chapter we will consider the stability problem
for the operator differential equation, where A is, in general, an un-
bounded linear or nonlinear operator with domain and range both contained

in the real Hilbert space, H.

4,1, Stability Theory of Linear Differential

Equations in a Real Hilbert Space

In this section we will be concerned with the existence,

uniqueness and stability of a solution to the operator differential equation
40 4 pu(e) = 0 (£>0) (4-1)

where A is, in general, an unbounded linear operator with domain, D(A), and
range, R(A), both contained in a real Hilbert space H, and the unknown
function, u(t), is a vector velued function defined on [0,®) to H.

We note that A can be considered as the extension of a linear
partial differential operator.

We desire to study the stability of a solution of (4-1) with-
out actually finding the solution. This can be done by comsidering the

properties of a semi-group, because if A ig the infinitesimal generator of
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the semi-group {Tt[qio} of bounded linear operators on a Hilbert space H,
then a solution to (4-1) with the initial value u(to) = uoeD(A) is given

by u(t;uo,to) = Ttuo for all pztb,with u(to;uo’to) =u . Hence, it suffices
to impose conditions on the operator A so that it will be the infinitesimal
generator of a semi~group, which will ensure the existence of a solution.
Then, the stability of this solution can be established from the semi-

group properties. This has been done by Pao [23] and Buis [7], where a
more complete discussion is given.We will state some basic definitioms

and some results.

Definition 4.1.1. A solution, u(t), of the equation (4-1) with

initial condition u(o) = uosD(A) means:

(1) u(t) is uniformly continuous in t, for all t>0, with
u(o) = u s

(11) u(t)eb{A), for all t>0, and Au(t) is continuous in t for
all t>0;

(1i1) The derivative of u(t) exists (in the strong topology),
for every t>0, and equals (-A)u(t).

Definition 4.1.2. An equilibrium solution of (4~1), denoted by

u(t) = u,» is a solution u(t) of (4-1) such that

Ilu(t) - U(O)lIH = 0 for all t>0

Definition 4.1.3. An equilibrium solution u, of (4-1) is said
to be stable (with respect to initial perturbations) if given any €>0,

there exists a §>0, such that

Huo - ue[|H<§ implies ||u(t) - ue"H < e for all t>0.
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u, is said to be asymptotically stable if

(1) 1t is stabde; and

(i1) i.i: °Llu(t) - ully =0,
where u(t) is any solution of (4-1) with u(o) = uoeD(A).

In this definition, stability and asymptotic stability are taken
with respect to the H - norm. It is clear from the above definition that
if 0eD(A), then u = 0, the null solution, i§ an equilibrium solution of
(4-1). Since the domain of the operator A contains the zero wector, it
follows that the study of the stability problem of an equilibrium solution
to the linear equation is equivalent to the study of the stability properties
of the nul% solutian. We should note that the theory is not limited to
equilibrium solutions, but is also valid by starting from any initial element,
UOED(A), with solution u(t;uo,to) which is not an equilibrium solution
(such as a periodic solution or any unperturbed solution).

We are also interested in the region of stability.

Definition 4.1.4. Let u(t) be a solution to {(4-1) with

u(o) = u - A subset D of H is said to be a stability region of the
equilibrium solution u, 1f for any €>0, there exists a 48>0 such that ueD
and |]u - ue|l<6 imply Ilu(t) - ue||H<e, for all t>0.

As can be seen from theorem 3.3.3, to ensure stability it is
required that A be dissipative with respect to the inner product of the
space H. However, Buis in [7] proved that if A is dissipative with respect
to any inner product equivalent to the one defined on H, then A is the
infinitesimal generator of a contraction semi-group and stability is
ensured by the equivalence of the norms and the properties of semi-groups.

The following theorem found in Buis [7] gives N.A.S.C. to ensure that two
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inner products are equiwvalent.

Theorem 4.1l.1. Let Hl = (H,(.aa)l) be a real Hilbert space.

An inner product (,,.)2 defined on the linear space H is equivalent to

the inner product (.,.)1 if and only if there exists a symmetric, bounded,

positive definite, linear operator SeL(Hl,Hl) such that

(u,w)2 = (u,Sw)1 for all u,weH.

We will now define Lyapunov functionals which are used
extensively in the study of stability theoxry, as we saw in Chapter 2.
These definitions are found in Pao [23] and Buis [7].

Définition 4.1.5. A Lyapunov functional on a real Hilbert

space H is defined through the symmetric bilinear form

V({u,w) = (u,Sw)l = (W,Su)l for all u,weH1

where SEL(Hl,Hl) is a symmetric (self-adjoint), bounded, positive

definite, linear operator. The Lyapunov functional is defined by
v(u) = V(u,u) for all ueHl.

It follows from the above definition and theorem 4.1.1 that
V(u,w) defines an inner product equivalent to (,,.)1, the inner product
defined on Hl. We now have the following result due to Pao [23] and
Buis [7] which gives sufficient conditions on A to ensure the existence
and stability of the null solution of (4-1). The notation has been

changed to fit into the context of this discussion.

Theorem 4,1.2. Let A be a linear ope&mator with domain D(A)

and R(I-(-A))= 1I.. Then the null solution

dense 1n Hl, range R(A) in Hl 1

of (4-1) is asymptotically stable if there exists a Lyapunov functional,
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v(u), such that, for some B > 0,

;(u) = 2V(u, (-A)u} < - Bllu|!§ for all ueD(4)
1

(where B is the dissipatfvity constant).

Remark 4.1.1. From this theorem, we can see that in order to

study the stability problem for (4-1), it is not necessary to construct
the solution to the differential equation, but it suffices to construct

a Lyapunov functional satisfying the conditions of theorem 4.1.2, which 1is
the same as finding an inner product equivalent to the one defined on the
Hilbert space H, with respect to which the linear operator —-A is strictly
digsipative, that is, since V(u,w) = (u,w)z, we need only show that A

satisfies, in addition to the hypothesis of theorem 4.1.2,

(U,(=A)u)2 < - BIIUI|§. for all ueH.

4.2, Stability Theory of Nonlinear

Differential Equations in a Real Hilbert Space

We also discuss the nonlinear differential equation

-d—géﬂ + Au(t) = £(u) (4-2)

where A is a closed, linear, unbounded operator with domain and range in
a real Hilbert space H, and f is, in general, a nonlinear eperator defined
on all of H into H. In order to discuss this nonlinear operator equation,
we need the following basic definitions of nonlinear semi-groups and
infinitesimal generator of & nonlinear contraction semi-group. These

concepts are discussed in Pao [23].
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{Tthzo} is called a continuous semi-group of nénlinear contraction operators

on H or simply (nonlinear) contraction semi-group on H if the following
conditions hold:

(1) for any fixed t>0, Tt is a continuous (nonlinear) operator
defined on H into H;

(ii) for any fixed uoeH,Ttuo is strongly continuous in t;

(1i1) TSTt = Ts+

¢ for s,t>0 and To = I (the identity operator);

(iv) lthu - Ttv||§J|u - v|| for all u,veH, and all t>0.

If (iv) is replaced by,
d -Bt
(iv) ||Ttu - Ttvllfg |[u - v|| (B>0) for all u,veH, and all
t>0;
then {Ttltzp} is called a (nonlinear) negative contraction semi-group on H.

Definition 4.2.2. The infinitesimal generator, A, of the

nonlinear semi-group {TtIFZQ} is defined by

Au = w - 1lim Thu-u

h+C h
for all ucH, such that the limit on the right side exists #n the sense

of weak convergence.

Definition 4.2.3. An operator (nonlinear) A with domain, D(A),

and range, R(A), both contained in a real Hilbert space H is said to be

dissipative with respect to the inner product on H, if

{Au ~ Av,u?v)H_i 0 for all u,veD(A)

and A is strictly dissipative with respect to the inner product on H

u,veD(A), such that



(Au - Av,u—v)H < - B(u-v,u--v)H for all u,veD(A).

Note that when A is linear these conditions coincide with the usual
definitions of dissipativity (see definition 3.2.3).

Definition 4.2.4. u(t) 1s said to be a solution of (4-2)

if it satisfies the following conditions:

(i) For each u(o)eD(A), u(t)eD(A) for all t>0;

(1i1) u(t) is uniformly Lipschitz continuous in t;

(11i) the weak derivative of u(t) exists for all t>0 and
equals (-A)u(t) + £(u(t));

(iv) the strong derivative, QEé%l = f~A)u(t) + f(uft)), exists

and is strongly continuous except at a countable number of values t.

Definition 4.2.5. An equilibrium solution of (4-2) is an

element, ueeD(A), satisfying {4-2) (in the weak topology) such that for

any solution u(t) of (4-2) with u(o) = u,
| |uCe) - ueHH = 0 for all t>0.

By comsidering the operator A1 = -A 4+ f we obtain the following

nonlinear operator differential equation

du(t
—é—l = A u(t) (4-3)

with the nonlinear operator A, having both domain and range in the real

1
Hilbert space H. As in section 4.1, we need to find conditions on Al which

will ensure that A, is the infinitesimal generator of a nonlinear semi-

1
group, which in turn ensures the existence of a solution to (4-3). The

stability of the solution can be established from the properties of the

nonlinear semi-group.
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We have the following result by Pao [23].

Theorem 4.2.1. Let Al be a monlinear operator with domain

and range both contained in a real Hilbert space H1 = (H,(.,.)l) such that

R(I"Al) = H, Then A1 is the infinitesimal generator of a nonlinear con-
traction (negative contraction) semi-group {Tt[tzp} if and only if any one
of the following is true

(1) The Lyapunov functional v(u) = (u,u)z, where (.,.), is

2

an inner product equivalent to (e,.)l, satisfies

viuw) = 2(A1u—A1w,u-w)2 <0 (W(uw) = 2(Alu—A w,u—w)2 < -B

1

| umw] 1)
2 for any u,wsD(Al), and B > 0.

(1) A is dissipative (strictly dissipative) with respect to

(.’,e)2 which is any inner product equivalent to (.,.)

1
In this work, we will consider the case whewe A1 = -A + f

where -A is the infinitesimal generator of a linear contraction semi-group
and satisfies the conditions of section 4.1. Conditions must be placed on
the nonlinear function £(u) so theorem 4.2.1 can be applied to the operator
A %+ f, and ensure the existence, uniqueness and stability, or asymptotic
stability of a solution to (4~2). Pao showed in [23] that if f satisfies
(4~4) below, and A satisfies the hypothesis of theorem 4.1.2 then there
exists a solution to (4-2) which is stable, or asymptotically stable if

B > 0, where B is the constant in theorem 4.1.2.

f waps all of LQ(Q) into L2(Q), where f is continuous from the
strong topology of 12(@) to the weak topology of LZ(Q), and f maps all
bounded subsets of LZ(Q) into bounded sets. Also, there exists a constant(4_4)
k < B, k can be negative and B8 is the dissipativity constant in (6~7), such

that for évery u,veLz(Q)

(f(u)--f(v),u—-v)o j_kllu—vllg.
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5.0, FORMAL PARTIAL DIFFERENTIAL OPERATORS

The linear abstract operator, A, discussed previously in

connection with the operational differential equation
d
L) 4 opu(r) = £(w (t > 0)

is the extension of a certain concrete partial differential operator,
A(x,D), and the functions that this operator, A, acts on are in a
prescribed function space, D(A), characterized by the boundary condi-
tions which these functions satisfy,

In this chapter, we will define more explicitly what is meant
by the concrete partial differential operator and discuss the proper-
ties that this operator has. The boundary conditions which charac~
terize the function space, D(A), can themselves be considered as
linear partial differential operators. Certain restrictions will be
placed on these boundary operators and the siguificance of these
restrictions explained. The function space on which the abstract
operator is defined is a key to this result and we will discuss this

space and some of its properties,

5.1, Elliptic Formal Partial Differential Operators
We will define what is meant by an elliptic formal partial
differential operator, and we will place certain restrictions on this
operator, that of being stroungly elliptic or properly elliptic. We

will also discuss some properties of this operator which should give



a better insight into these restrictions., Before defining an elliptic
partial differential operator, let us denote the following conven~
tional notations: x = (xl,xz,...,xn) and £ = (51952"‘°’€n) are real

n
vectors in R"; |a| = ] oy where a = (0y,09,040,8,) with the compo=

1=l
o d ala "2 d *n
ts bedi nonnegativ integerg: D = (cww . ) P (Soem e
nents odeing gacive Iintegers; (Bxl) (axz) (axn) H

1f |a| = 0 the operator D* denotes the identity operator;
o al QZ Gn
£ = £ &9 5eeey £y 1s a real number; a (x) is the function

a 588 (x)°
Gldz dn

Let us first define a formal partial differential operator.

Definition 5.1.1. Let the operator

A(x D)=} a, (x)D
of<p
where £ is a positiﬁe integer and the coefficients, a,(x), are
infinitely differentiable functions defined on an open set Q & R®,
(The conditions on 9 will be made more explicit later, in (5-9). Then
A(x,D) is called a formal partial differential operator of order 2.
The associated polynomial
Ay(x,E) =] a, (x)"
a|=2
is called the characteristic polynomial, associated with the principal
part, A (x,D), of A(x,D).
We will now define an elliptic formal partial differential

operator,
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Definition 5,1.2., Let

A(x,D) =L  a D" (5-1)
o] <2

be a formal partial differential operator of order %, defined in a
bounded domain £ € RT, A(x,D) is said to be elliptic at x, € Q, if for

n
every nonzero real vector & in R

Ay (xgs) # 0, (5-2)

The following theorem justifies the fact that the order of

A(x, D) is even, that is, % = 2m, for some integer m,

Theorem 5,1,1. If n > 2, of if a,(x) are real for the case
n = 2, then every elliptic operator is of even order,
Proof, Let &, £' € R™ be linearly independent. Consider the

polynomial, of the complex variable 7, A,(x, & +7E'), We have

A (x, BHTE') = ) a (x) (B+TE")
|o|=2

L L=
= TAL(x,8") + 7T

lA.l(x3 Eg g')""c oo tA (xg g)
where the A, are polynomials in £, €', The equation in T,

A (x,E+TE') = O (5~3)

does not admit real roots. Otherwise, if it were zero for some T,

real and nonzero, then this would imply
Ao(xgn) = 0, for some n real and nonzero

contradicting the fact that A(x,D) is elliptic. Note, that if a,(x)



63

is real we now have the result, since the equation above has no real
roots, there must be 2m roots which come in complex conjugate pairs,
Therefore, there are m roots with positive imaginary part, and m
with negative imaginary part,

Now, equation (5-~3) does not admit real roots when £°' is

fixed and & runs through J, where
J={€ e R® | £ ¢ 1ine which passes through {0} and &'},

Since Ao(x,E') is not zero and does not depend on §, then the roots

of (5-3) depend continuously on £ € J, Also, the number of zeros of
Ao(x, £+ 18') is constant, for every £ € J, Since J is connected, the
number of roots of (5-3) with positive imaginary part is constant

(say m), for every £ € J, Similarly, the number of roots with nega=-
tive imaginary part is constant (%-m), for every £ € J, The proof of
this statement is by contradiction, Assume there exists €1 Ez € J,

unequal, such that the number of roots with positive imaginary part of
g =
Ao(x, El + 187) 0
is not equal to the number of roots with positive imaginary part of

Since the number of zeros is constant, one of the roots, say Ti(gl)g
must change from having positive imaginary part, to one having nega-
tive imaginary part, say Ti(Ez)@ But, since the roots depend con-

tinuously on £, then T4(f) must pass through a real zero, contradicting



the fact there are no real roots. Hence, the assumption is false and

we have proved the statement, Now, whenever £ € J, then < ¢ J, and
Ay(x, =€ + TE") = (~1)%A (x, £ = 1E"),

Therefore
f-m = the number of roots of A (x,«~f+tf"') with imaginary part < 0
= the number of roots of A (x,E=t£") with imaginary part < 0
= the number of roots of A (x,E+1£°') with imaginary part > O
=m,
The next to last step follows since
A

(=t EN T (t=11(E))
iemtl

m
A (x, E=tE")= 1
° i=1

where TI(E) are the roots with negative imaginary part, and

m L
B (R, EHET) = A (xyE=(-1)E") =T (==t (NN (=t=T3(E))
i=1 i=mtl
n + % _
= (t+r3(E)) T (r+14(E))
i=1 i=m+1

vhere T;(E) are now the roots with positive imaginary part. Hence, we

have shown £ = 2m, and the proof is complete.

qed

Remark 5,1.,1., This theorem fails for n = 2, as can be seen

by considering the operator of Cauchy~Riemann,

9.
axl
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which is elliptic, but of order 1.

Remark 5.1.2, It suffices to assume ellipticity of the
operator when we discuss general properties of solutions to the
Dirichlet problem. But for n = 2, when we discuss the theory for more
general boundary conditions, the property in the proof of theorem 5,.1.1,
on the number of roots of (5-3), becomes very important.

We will now formally define this root condition.

Definition 5,1.3. The formal partial differential operator

A(x,D) =} aa(x)D“
o] <2m
is said to be properly elliptic (or satisfies the root condition) if

(i) A(x,D) is elliptic, for all points x in @, and

(11) for every x € {, and for every £, £' € Rn, linearly
independent, the polynomials Ao(x, E+1E') of the com=
plex variable T have exactly m roots with positive
imaginary part.

Definition 5.1,4. The formal partial differential operator,

A(x,D), of order 2m, is strongly elliptic at x, ¢ Q if for every non=-

n
zero vector § ¢ R

(-1)"Re{A (x,£)} = (a1>mne{z| a,(x,)E% > 0
ol =2m

pefinition 5.1.5. A(x,D) is asaid to be strongly elliptic

(elliptic) in @, if A(x,D) is strongly elliptic (elliptic) for all x

in Qu
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Remark 5,1.3: If we define 4 = Zn (3 )2 , then «A ie a
im] 9%y
strongly elliptic operator, Also, (ul)kAk are strongly elliptic
operators, for every integer k > 1.
We will now see how these properties of ellipticity, proper
ellipticity and gstrong ellipticity are related,

Theorem 5,1.,2, Let A(x,D) be a formal partial differential

operator.,
(1) 1If A(x,D) is strongly elliptic, then A(x,D) is properly
elliptic.

(i1) If n > 3, or 1f n = 2 and the coefficients, a (x), are real,
then A(x,D) is elliptic if and only if A(x,D) is properly
elliptic,

Proof. The proof of (i) follows the proof of theorem 5.1.1.

(11) is also a direct consequence of theorem 5.1.1, since if n :’3, or
if n = 2 with real coefficientz, then any elliptic operator is shown
to satisfy the root condition,

qed

Remark 5.1,4, The exemple seem in remark 5.1.1, shows that

there exists elliptic operators which are not properly elliptic. Also,

Schechter in [28] showad that 1if we let

4 4 4 2 2 2

.2 ) ) ] ) )
A(x,D) = ¢ ?4.+ T~ 4) + 4 ¢ 2.+ 2) 5
Bxl axz ax3 axl axz ax3

then, A(x,D) is properly elliptic but not strongly elliptic,



The above theorem and succeeding remark show that an elliptic
operator is also properly elliptic, except for the case n = 2 with the
operator having complex coefficients. Also, all strongly elliptic
operators are properly elliptic,

The following theorem gives a stronger result than theorem
5.1.2, that is, if A(x,D) is strongly elliptic, not only is it properly
elliptic but the polynomial (al)on(x, E+TE') + A, for A > 0, satisfies
the root condition, The importance of this theorem will be more
apparent when we discuss the general boundary conditions in section
5.2,

Theorem 5.1.3. Let

A(x,D) =7} a_ (x)p*
la]s2m ©

be a strongly elliptic partial differential operator. Then for every
x € @ and for every £, £' ¢ Rn, linearly independent, the polynomial

in the complex variable t,
(=1)"A (x, E+TE") + X , with A > O

has exactly m roots with positive imaginary part.

Proof. We first must show that there are no real zeros, i.e.,

for any real T
m
(-1) Ao(x, EHE’) + % # 0.

The proof of this assertion is as follows. Let t be a real number.

Hence, £ + T£° is a real vector in R®, Then
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(=18, (x,E41E") + X = (=1)"[ReA  (x,E+TE') + 1 ImA (x,E+TE")] + A
= [(=1)"ReAy (x,6+TE )] + 1[(=1)"TmA, (xE+TEN) ],
Then, since A(x,D) is strongly elliptic and A > O

(=1)™Re[Ay(%,E+TE")] + A > A > 0
Therefore our first assertion is proved, The proof now follows
directly as the proof in theorem 5.1.1, since the roots, 14(£), depend
continuously on £, and the number of zeros of (wl)mAb(x, E+TE') + A 18
a constant. The proof that the number of roots of (-l)on(x, E+TE") + A
with positive imaginary part is a constant, m, and the number of roots
with negative imaginary part is a constant, %-m, utilizes the fact
that there are no real zeros.
qed

Remaxk 5.1.5. In placing the appropriate restrictions on the

boundary conditions, see section 5,21, it is necessary that the partial
differential operator, A(x,D), satisfies the condition that for every
X e'ﬁ, and for every £, £° ¢ Rn, linearly independent, the polynomial

in the complex variable 71,
(ml)on(x, E+TE'Y + A, with A >0

has exactly m roots with positive imaginary part. Theorem 5.1.3 showus
that if A(x,D) is strongly elliptic we have the desired result. By

considering the following example in Rz
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it can be seemn that A(ggb) is properly elliptic, but does not satisfy
the required condition on the polynomial (wl)mA.o(xs E+TE') + A, The
proof follows from the definition of the root condition. Indeed, let

£ = (£9,8,) and g' = (si,gé) be perpendicular, or equivalently,
g8 + £l =0 where €2+ £,7 #0, and £12+ £2%2 4 0
11 272 1 2 * 1 2 °

Then

Ao(x,gl-i-rg') Ao(gl+rg’l, 5;2+rg§)

EpteeD” + (g tee))’

2
(24e2) + 2e(ggeirene) + e ey

2 2 2, ,2, .2
(£1%€9) + v (g1 7+E5D)

Hence, we can see readily that there iz one root with positive imaginary

part, or A(x,D) is properly elliptic, But
1y ' o ol (r2ns2 2,42, 2 -
(=1)"Ay (%, gheg’) + & = =[(gy+g,) + 7N + 2 = 0

has 2 equal real roots, namely zero, if we let ) = gi + 5; > 0, There«
fore, (nl)u§a§x, g+tE") + X fails to satisfy the required root condition,
This tells us that proper ellipticity is not sufficient to gét the
desired result, and we must assume that A(x,D) is strongly elliptic.
Let us now consider the formal partial differential operator
A(x,D) = a_(x)D%,
a|<2m ¢

Since the coefficlients are in C“(ﬁ)s then, as shown in Friedman [11],
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one can rewrite the operator in the divergence form

AGx,D)(+) =] coPlee @en. o
lolslo|<m Pe

The following result is found in [11].

Theorem 5.1.4, Let A(x,D) be the formal partial differential

operator defined in (5=«4), Then A(x,D) is strongly elliptic at

X, € T if and only if for every £ ¢ R"

m

Re[] anpc(xo)iol > ColEl =, Co(lilz) , for some C, > 0,
lo|=|o|=m

(5=5)

Remark 5.1.6, Friedman showed in [11] that if A(x,D) is

4strongly elliptic at every point of Q, since apc(x) € Cmfﬁ), then C
can be taken independently of x € Q.

Now we will give the definition of the formal adjoint of
A(x,D),

Definition 5.1.6., Let

A(x,D) *Z a (x)Da
u[:}m @

be a formal partial diffevential operator., Then, the formal adjcint

of A(x,D), designated A*(x,D), is given by

A*(x,D) () = ) <«1)'“'n°<"’“"5’aa<x (+)) (5-6)
|a|<2m

If A(x,D) = A*(x,D), then A(x,D) is said to be formally self-adjoint.
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52, GCeneral Boundary Conditions

In the study of the Dirichlet problem for the elliptic partial

differential equation
A(x,D) u(x) = £(u) e Q

with boundary conditions

3
By (x4D) u(x) = ( 5%) u(x) = 0 xed (0<j<ml)

where n is a normal vector at 3Q, oriented toward the interior, the
following inequality is essential in the solving of the above problenm,

Garding's Inequality. If A(x,D) is a strongly elliptic opera-

tor of order 2m defined in the domain £, then for every u e HE(Q)
(A(x,D)u,u) > C ||u|l2 - C ]lul]z for some C,>0, C, > 0
4 £50 = 1 m 2 o? 1 L S

This inequality holds only for strongly elliptic operators and is well
suited for solving the Dirichlet problem, since a function with zero
Dirichlet data on 3Q is in Hﬁ(n). However, when one tries to extend
this method to the study of partial differential equations with more
general boundary conditions (for example, the Von Neumann problem)

one runs Into some difficulty,

(1) First of all, Garding's inequality does not hold for
classes of funciions outside H§(9>3 especially if such classes of
functions have boundary conditions of order greater than or equal o
m (Note that the Dirichlet boundary conditions only have order up to

mﬂ“le) ®
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(11) Also, we know that the assumption of boundary valueas
must be obtained in some way from integration by parts. Hence, in
Garding's inequality (A(x,D)u,u)o must be integrated by parts, and
this will yield results only for a small class of boundary conditions.

Martin Schechter in [28], solves the general boundary value

problem
A(x,D) u(x) = £(u) X e Q
with the general boundary conditions
Bj(x,D) u(x) = 0 x e 90 (0 <3 <m=1)

where the operators satisfy much weaker conditions than that for
solving the Dirichlet problem, It is only necessary that A(x,D) be
properly elliptic, and Bj(x,D) be a "normal set' and satisfy the
"complementary condition®, which are defined in section 5.21. The
gsufficlency of Schechter’'s theorem is proved by utilizing the follow-

ing inequality which generalizes and corresponds to Garding's inequal=-

ity’

Lemma 5.21. Suppose {Bj}?zlD the set of boundary operators,
satisfy the complementary condition with respect to a properly elliptic
operator, A(x,D), of order 2m. Then, there exists a constant K > O,

such that for any u e C ()
2 2 2
a5 < KCHAa]]g + [Tu]]g).

Aleo Bj being 2 ‘normal set’ is a sufficient condition for

ug to show that
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c;(g) e {ue C°C | Bju=0ond® (02§ <ml)

is dense in H%m(Q), which is the key function space used in defining
the domain, D(A), of the abstract operator extension of A(x,D).
5,21, General Boundary Operators, the Case n > 2

In this work we are studying the boundary value problem for

the elliptic partial differential equation
2008 4 Ax,D) ulx,t) = £(w) XEQ t>0
with the boundary conditions
Bj(x,D) u(x,t) =0 xed, £t>20 (0<]<m=l)

where the Bj are linear, boundary differential operators, independent
of time t, £ is a nonlinear function defined on the appropriate functiom
space, and Q is a bounded domain in Rn9 n> 2, It is well known that

even in the classical cases, for example, the Laplacian

A(x,D) = =A in @ R,

we can not arbitrarily define the operators Bj and be sure that the
problem will be well posed. Hence, in this section we will give
certain conditions of admissability on the operators Bj, with respect
to the operator A(x,D). These restrictions will be defined and
explained,

Let Bj(an) (0 £ §j £m=1} be m linear boundary operators

defined by
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By(x,D)¢ = ] by D" (5-7)
ihli.mj

where bjh e C°(30) and my is the order of By(x,D). We will designate
Bjo(x,D) as the principal part of Bj(x,D). Also, it must be noted
that {Bj} are independent of time t.

Remark 5.,21,1. More precisely, Bj(x,D) designates the

operator
R bjh(x)Yo(Dh¢)
Ihliwj

where ¢ is a function defined in'ﬁu so that Yo(Dh¢) is the trace of
Dh¢ on 92, which can be defined in the classical sense or in the sense
of the 'trace theorem', see theorem 3,45,4.

We will now give equivalent definitions of what we mean by a
normal system of boundary operators which are found in Friedman in [11],
and Lions and Magenes [18].

Definition 5,21,1, Let us consider the set of boundary

-3 ""1
operators {Bj}?_g, as defined in (5=7), {Bj}§-0 is a normal system if

the following conditions are satisfied,

(1) my # my for 1 # j, where my is the order of Bj;

(11) for every x° € 39, if £' is the normal to 99 at x',
and £ is any tangential vector to 39 at x', then in the polynomial in
the complex variable T

mj m,=k

3 j
Bjo(x’ga 4 TEY) = Cj(x°)T + kal cjk(x?)r

the leéading coefficient cj(x') iz always not equal to zero,



Definition 5,21,2. The system {Bj}?;é defined above is a
normal system if

(1) my #m,, for i 4 §;

jﬁ

(i1) for every x' ¢ 32, and for every £' # 0, normal to 30 at

Z b (x,)g.h # 0,
P
3
The proof that these two definitions are equivalent is seen by
rewriting Bjo(x,g + t£') in its expanded form, and noting that the
highest order coefficients

h
c,(x) = ba, (x)E'

"y
Therefore, since £' is normal to 3Q at x, cj(x)'ﬁ 0 if and only if

) byp(IE'™ # 0
|h|-mj
which completes the proof.
Gerd Grebb formulatea another equivalent definition of a
normal system of boundary operators in [12] which is more aesthetic and
should help clarify its meaning. Bj(x,D) can be written in the follow=
ing equivalent form by a transformation of the variables! see section

5.22,

3 mj mjwl 5 k
By(x,D)u = by(x)( =) Ju + zkao Tj( 5z) v (5-8)
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where bj(x) € Cm(aﬂ), and Tkj are 'tangential® differential operators,
or derivatives in the direction tangent to 3Q, of order :ﬂmjuk, We
will now give the equivalent definition.

Definition 5,21.3. The system of boundary operators {Bj}?:é

as defined in (5-7), is a normal system if

(1) my # mj for 1 # 33
(i1) the functions bj(x) have inverses, b;l(x), such that
b;1 e C°(39).

where bj(x) are the functions in (5-8),

Remark 5.21,1. B, 1s a normal system means that the orders are

3

distinct, and there are no purely tangential derivatives at the boundary.

An example of a normal system of boundary operators is the following,
and 1is found in Friedman [11]. Let u be a nontangential smoothly
varying direction on 3Q and let
3 8+

Bj(x,D) - ( 3 ) + lower order differential boundary operators
for some 8, 0 <8 <m, (0 < § <m=l). Then Bj forms a normal system,
If u is a purely tangential smoothly varying direction on 3, then
this is an example of a set of boundary operators which is not normal,

We will now define what is meant by the system of boundary

operators satisfying the strong complementary condition. TFirst, we
will define what is meant by the complementary condition as is found

in Agmon [1], Friedman [11]}, Lione and Magenmes {18} and is used by

Schechter in [28] to solve the general boundary value problem.
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Definition 5.,21.4, Let {Bj}?:g be a system of boundary
operators as defined in (5=7), {Bj}?:3 is said to satisfy the com-

plementary condition if for any x ¢ 3Q, letting ' denote the outward
normal to 3Q at x, and £ # O be any real vector in the tangent hyper=-
plane to 30 at %, then the polynomials in <t

Byo(xsg + 1€") = ] bjh<x)(§+ra')h (0 < j < ml)
'hl"m:‘

are linearly independent modulo the polynomial
+
M(E,T) = My (r=1y (E))

vhere t;(g) are the roots of Ao(x, g+1E') with positive imaginary part

(where we assume A (x, g+r£') has m roots with positive imaginary part).
We will now give a stronger condition than the one above on

the boundary operators, Bj’ which ig found in Agmon {1] and Friedman

[11] and is necessary when we have to show R(\I-(«A)) = H, where A

is the abstract operator extension of A(x,D). It should be noted here

that Friedman allows for a larger class of values for )\ in definition

5,21.5 below, that is arg()) = 0 (- %-;,e 5;%)9 but for our results it

suffices to congider the definition for 6 = 0, or arg()) = O.

Definition 5,21.5. The system of boundary operators {Bj}?:g

as defined in definition 5.21.4 is sald to satisfy the strong comple=
mentary condition if we let x € 30, £, £ be as in definition 5.21.4;
then for any A > 0, the polynomials in 1,
h
Bjo{xsﬁ +tg') = § by (%) (E+1E") (0 < § < m=1)

are linearly independent module the polynomial



78

ME(EA,T) = My (T=TH(E,))

where Tﬁ(E,X) are the m roots of (wl)mAb(xEE + TE%) 4+ A with positive
imaginary part (where we assume (ul)on(x,g + t£') + A has m roots with
positive imaginary part).

As we can see now, if we assume A(x,D) is strongly elliptic,
then from theorem 5.1,3, A(x,D) satisfies the condition that
(-l)on(x,E + 1£') + A has m roots with positive imaginary part., To
help clarify the definition of the complementary condition we will
define what we mean by a finlte number of polynomials being linearly
independent modulo another polynomial,

Definition 5.21060 let {PO(T). Pl(T), eeagy Pmﬂl(r)} be m

polynomials in t. We say the syatem {Pj(r)}?:é is linearly independent

M=

modulo the polynomial Q1) if the system of remainders {r (T)}j‘; is

3

linearly independent, where rj(T) is the polynomial remainder after

dividing Pj(r) by Q(t), or

P.(t) =8

3 (0)Q(t) + r (1)

3 3

and the orders of rj(r) are all lesgs than the order of Q7).

From this definition, we can see that if all the orders of
{Pj(r)}?:é are less than the order of Q{t) then rj(t) 2 Pj(r), and
this definition reduces to that of linear independence. This shows
that our definition of the complementary condition generalizes linear
independence of the system of polynomials {Bj(xsg + TE')}?:gg in that

if the orders of Bj(x,¢ + t£") are less than m, which iz the order of

. =1
M(E,T) = H:gl(-rm‘r;(s))9 then {Bj}?mo satisfies the complementary



. me1
condition if and only if {Bj(x,£+ TE’)}j 0 is linearly independent.
An example of this is the Dirichlet boundary conditione, where
3

Bj(x,D) = ( %; )" and the orders my < me Therefore, as we will see in
example 5,21,1, these boundary operators are linearly independent and,
therefore, satisfy the complementary condition.

In addition to the above assumptions on Bj(x,D), we will
assume that the orders of Bj(x,D), my < 2m-1, or equivalently, the

orders of Bj(x,D) < the order of A(x,D),

Example 5,21,1, Among the system of boundary operators which

satisfy the conditions of this section, see (5-9), with respect to any

properly elliptic operator A(x,D) is the Dirichlet system

a j
Bj(x’D) = ( “a";;) ®

-1
Proof. ( %;,)j ?-0 are m in number, the coefficients are in

Cc®{3Q), and my =3 <mg 2ml, The system is normal on 30, Indeed,
the orders, my = j, are distinct, Also, these boundary operators are
of the form (5=8), with no tangential derivatives. In other words,

the highest ordered term is purely normal, and therefore, satisfies

definition 5.21.,3., This proves the system is normal on 3Q.

3.
an

m=1
{«( )j}j_0 satisfies the strong complementary condition. Indeed,

after a transformation of variables, the boundary operators are of the

form (see section 5.22)

\ a3
Bj(st)(E;:)

where the normal, n, to the boundary of x is transformed into the
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xé«axisa Then, it can readily be geen that

B;(xgg + TE') el Be(xi(gl""‘SEn‘_ler)

3

- 1d,

Since, the order of M(£,T) is m, and the orders of Bg(x,g + 1E') < m,
then the remainders rj(r) = 1, Hence, the system {T°,T,...,Tm°1} is
linearly independent, and satisfies the strong complementary conditionm,
Martin Schechter in [28] gives the following example of a
normal system of boundary operators which does not satisfy the strong
complementary condition with respect to a properly elliptic operator,

A(x,D), Let A(x,D) be the fourth order operator corresponding to the

characteristic polynomial

- 122 2229022 2,,2
A,(E10E,) = (65 + 26,8, + (Wed)ETIIE] = (We/D)g e, + (e)g)]

in two dimensions, where 0 < e < Y3, Let the boundary operators be

defined as follows,
B (x,D) = 1, B.(x,D) = 2. 3
[e] @ ® 1(9) (an)

We will summarize below the hypothesisz on the system

(A(x,D),{By},0)s
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(1) Q is a bounded domain in Rn, n> 2, with
boundary, 30 € C*, such that Q is locally on
one side of 3Q (see section 3.43).
(i1) The operator A(x,D) is strongly elliptic in 3}
has coefficients a (x) ¢ ¢’ (@), and is of order
2m, (5-9)
(i1i) The operators Bj(x,D) are m in number, with
coefficients bjh(x) £ c”(an), and are indepen-
dent of time t,
(iv) {Bj}?:;.is a normal system on 3R and satisfies
the strong complementary condition.
(v) The order of Bj(x,D), my < 2m-1 (0 < j < m=1),
5.22, Equivalent Definitions
In order to verify the strong complementary condition for the
system (A(x,D),{Bj},n)s we utilize definition 5.21.5, which is quite
cumbersome and difficult to use in its present form since the vectors
in the definition, £ = (El"°°’€n) and £' = (El’,...,in'), are not
written explicitly, which does not allow for a simple verification of
linear independence. In this section, we will give equivalent defini-
tions of the strong complementary condition, and show the more simple
procedure used in verifying the condition. See Lions and Magenes in
[18].
Since the boundary is of class C”, by 'local charts’ and
‘partition of unity’' (see section 3,44), there exists a finite cover-

ing of 3Q by open sets, Ui (1 < i < N), such that for every integer i,
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\
there exists a diffeomorphism, an infinitely differentiable mapping

84, defined as follows,
84 maps Ui onto the sphere v = {x' ¢ RD | |x’| < 1}
in such a way that the image

0,(U;N Q) =0, = {x'e R" | x' € o, x,' > 0}

6,(U; N 2Q) =30, = {x"¢€ R® | x' € g, x,' =0},

See figure 3.4,
Now, for any point X, € 9Q, we know that there exists a

fixed integer i, 1 < i < N, such that x_ ¢ Uy, and we can define the

o
diffeomorphism By which depends on X,s such that X, is transformed
into x,' = (0,.4.,0), and for any x € 3Q N Uy the operator A(x,D) is
transformed into the operator A (x',D) defined by
9 *1 3 %n
Fo (x',D) = ] 3 (3= ) Tersl o) (5-10)
|a}<2m 1 n

where o = (al,eea,an) with nonnegative integer components,

%' = (xl',...,xn') € Rn, and the coefficients are infinitely differen-
m=1

tiable in o, U AT Also, the system {Bj}jao is transformed into a
system of operators‘LQj}?’é defined by
B, (x",D) =} bl (x7)( 3~?-) laoo( 2”? )hn (5-11)
3 Ihlin jh axy X

where h = (hlg,e,,hn) € Rn, with nonnegative integer components, and

with infinitely differentiable coefficients in 340,.



Remark 5,22.1. From Lions and Magenes [18] and Peetre [26],

it 1s shown, since 8, is a diffeomorphism, that the property of
A(x,D) being properly elliptic, and {Bj}?:% being a normal system and
satisfying the strong complementary condition are invariant under
these transformations.

In considering the properties mentioned above, we need only
consider the principal parts of (A(x,D),{Bj}), Hence, after the trans-
formation B0 A(x,D) and Bj(x,D) are transformed into the operators

Sx'4D) and Bj(x',D) with principal parts

a a

= 9 9 3 1 9 n -
cho(x' sD) 2 o ‘zmaa(x )( ax" 1' ) eee( 3;‘: ) (5 12)
h h
? = ] ? 9 1 2 n -
Bio(x'sD) = | ) _mjbjhcx Ygr) Tee (5T (5-13)

where J%o(x’,D) and ‘Bjo(x',n) depend on 6, which in turn depends on
X g 90, From remark 5.22,1, we have the following equivalent defini-
tion of definition 5.21,.5.

Definition 5.22.1., Let {Bj}?:; be a gystem of boundary opera-

tors as defined in (5»7), and A(x,D) a strongly elliptic operator in Q.
{Bj}?:; sétisfiea the strong complementary condition if for every

X ¢ 90, and for every ) > 0, after the transformation by 84, which
depends on x, letting £° = (0,...,0,1) denote the outward normal to the
boundary 3Q at x' = (0,0..,0), and £ = (EysseesE,.1:0) # (0,...50) be

a real vector in the tangent hyperplame, x,' = 0, at x' = (0,...,0),

then the polynomials in the complex variable <t
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1 h h

8 ©emey = B, 0, ) =) b! " weln
ng s jpo ’ lges%gnPlst) 'hlﬂm h(o)gl eaagnml T
3

(0 <3 < ml)

are linearly independent modulo the polynomial M'%(g,\) = H:ﬂl(reti*(sgx))
where ré*(ggx) are the m roots with positive imaginary part of the

polynomial

DA O,+1E") + A = (=1 A_(0,(E;000sf_1,7)) + A
© [ 1 n=1

[+ 3
1 -
&= (“l)mz a;(O)El 0005 :11Tn

o
+ A
|| =2m ?

Since % ¢ 3Q is arbitrary, this equivalent definition is the
usual way the strong complementary condition is verified this can be
seen, since Bj,P and J{o are more explicitly written in this defini~-
tion than in definition 5.21.5 where £ and £' are not concretely
defined, In order to use the equivalent definition we must perform
the transformation, @,, for each x e 3Q. We will now define this
transformation,

Pick X ¢ 39, arbitrary and fix it, 6, can be written as a pro-
duct of 3 transformﬁtions. Refer to Schechter [28] for a discussion
on this transformation. The first two steps are a rigid motion which
takes X into the origin and the tangent hyperplane into x, = 0, by
first translating X so that it coincides with the origin, and then
rotating the axis so the new xnewaxia coincides with the normal to
at X' = (0,4¢.4,0), and the tangent hyperplane at X' = (0,...,0) coin~

cides with the plane, x_, = 0. The third step iz a slight twisting of

7



the surface so the boundary, QN Ui’ coincides with a portiom of the
plane x.' = 0. See figure 3.4,
Let us define
91561°Bi°91
3 2 1

where eil, 612, 913 are defined as follows, by letting x = (xl,.aq,xn)

(1) translation, 6, :

1
xh' = xp = X where 1 <h < n (5-14)
(i4) rotation, Si s
2
n
X" - ) Apc®i where 1 <h <n (5-15)
k=1

and the coefficients satisfy
2:n
=1 (L<h<mn), 8y, = 0, where h # ¢
ik kalahk k

(iii) 6, :
i3

Let

xn" = '«P(Xl"g see ,x;’lal)

define the surface 3(@)" M U;", where 0 = ¥(0y...,0), and ¢ is of

class €', Then 8; is defined as follows
3
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th" . xhﬁ (l ;h :. n"’l)
(5=16)

® L A1

n - xn" - lp(xlngoeagx;_l)

This transformation, 045 is a diffeomorphism which takes X ¢ 30 into
the origin and slightly deforms 3Q Uy so it coincides with a portion

of the tangent hyperplane, x.' = 0, at X' = (0;...,0).

n

After the above transformation, 64 = 8y * 84 ¢ 84 , We transform
3 2 1
(A(x,D),{Bj}) into (Jl(x’,D),{ E’}m“l) and verify definition 5,22.1,

373=0

Definition 5.22,1 is the usual procedure used to verify the
strong complementary condition, But the problem occurs that the
transformation, 64, depends on x ¢ 3Q, and we must verify the strong
complementary condition for every x ¢ 3Q. However, there are certain
conditions which will allow us to say that if we can verify the strong
complementary condition for only one point x £ 3Q, then the strong
complementary condition will hold for every point on the boundary. The
conditions needed are that the coefficients a (x), bjh(x) be constant
and the system (A(x,D),{Bj}) be invariant with respect to eize Hence,
with these conditions on the system we will be able to give a more
easily verifiable definition of the strong complementary conditionm.
Let us now assume that the coefficients aa(x) and bjh(x) are constants,
as bjh and we define what is meant by (A(x,D),{Bj}) being invariant
with respect to eize

Definition 5,22,2. Let 64 be the transformation defined by
2

(5-15). We say the system (A(ng),{Bj}) is invariant with respect to

84 » 1f for every x ¢ 3Q, after transformation by 9129 the system of
2



operators
) % ) oy
A(XD)B a(aﬂsﬁn) o’e(.wa-‘:.p)
’ Z]a[:?m @ Xy %y
(5=17)
h h
) 1 3 n
Bj(x,D) 8z|hl<m bjh(s;';) ..,(-a-;:l— (Oij;mu.]_)

is transformed into the system (Ji(x',D),{‘Bj}) with principal parts

' ) %1 ) *n
Sro (X' 4D) = Z|a|-2maa( 5-;1-) seel ng)

(5-18)
hy h

by e § 3 3 n
Qjo(x »D) z[h| by ( 3‘;‘-{-) N ( 3;;:)

3
Before giving the equivalent definltion of the strong comple=
mentary condition, we will discuss more fully the transformation

ei = 0 0 -ei and show that under the conditions of definition
i

5,22,2 we have invariance of the system (A(x,D),{Bj}) with respect to
84s in the sense that after the transformation 64, the sytem
(A(x,D),{Bj}) defin@d in (5-17) is transformed into the system
(J%(x,D),{(Qj}) with principal parts as defined in (5-18), that is,
the principal parts remain invariant after 64.

First, we will see from the following example that, in general,

the system is not invarlant with respect to the transformation 8y o
2

Example 5,22.1. Let us consider the following formal partial

differential operator
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A(x,D) = ay( %}-{—; )2 + ay( -g-;; )2, a; #a, # 0. (5-19)

Let X € 3R, be arbitrary and fixed, and define the transformation 04 «
2

which clearly satisfies the conditions of orthogonality, From the

chain rule for partial differentiation we obtain

d 2 1 3 2 3 1,3 2

Bxl 2( axi ) - axiaxé + 5 Bxi

3 2 ) za2 1 5 2
( o w = T )T o T o

axz 2 3xl axlgxz 2 axé

and after the transformation §; , A(x,D) becomes,
2

i 7
.13.(2)( ).

3 2. .3 1za a
A(x,D) = 81(3;10_+32(§;;) = (=== )G ,) +(82 a3)s
Since a; # a, # 0, we readily see, in general, that a system

(A(x,D),{Bj}) is noﬁ invariant with respect to 64 .
‘ 2

For an example of a system which is invariant with respect to

6 » 8ee example 5,22,2,
2

Now, let us consider the system (A(ng),{Bj}) defined in (5=17)
with constant coefficients 8y bjh and the aystem being invariant under

84 « We show that the system is also invariant under the transformation
2

6, = 8, 0, 0, »

i 13 12 11



We need the following lemma.,

Lemma 5,22,1. Pick the point X ¢ 32, arbitrary, and let 8,
be the transformation defined by (5-14), (5~15) and (5-16),. Let us

assume we have already transformed X € 5Q by 6 961 such that

2 *1
X = (0y,¢0.,0) and the tangent hyperplane to 3Q at X is X, = 0. Assume
that the system (A(x,D),{Bj}) has constant coefficients., Then, for

every nonnegative integer m < the order of A(x,D), after the transfor-

mation 64 defined in (5-16) we obtain

3" ™ Z“‘ 3 o™
v+ ("" ) T L} .
9X  2840X X' 450X ox 90X se.s0X, OX
1 jm 1 jm 1(1)=1 ji(l) j1 jm
ji"ji(l)
mel 2y 2y 2
+ Z (_' )(“‘ ) N ¥ '2 + XX}
i(l)‘l axji(l) axji(z) axjioaa:‘jmaxn
1(1)<1(2)
ji”i(l)“i(Z)
m
+ (- S Yoos (= ‘?“L") 2""';;-# (lower order terms).
ox ox ox!
j]_ jm n

I

Proof. We use the following facts, since X = (0,...50) and the

tangent hyperplane is x, = 0,
LA and (1 < j, <n).
ax R

This lemma is proved by induction on m. For the case m = 1, we have

from the chain rule
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3 n ( oxp y 2 NN VR N
ax. ox 3%’ . BxT © 3x ox’ °
3,  h=l 1, *h i1 31 n

Assume the equation is true for the case k = m, and prove true for m + 1

am+1

oxX 3x aeoax
AR PR

- &

ox! ax

1(1)=1
Il

ax§
LAY

') .ax:']

1 m

" O YR R

31q1)

9%
jl

Iax'
1¢2) ]

i(1)=1
1(1)<i(2)

31#11yMi(2)

axj ij

1(1)

3y

3l}/ ) 206 ("’
axj

(=
1

in
<+

oeeaxv
m

1(1) =1
3485 (1)

caeBX'
1 3

(- 2

m

\0

%
- i

3x*®

3

e0s0%® Ox
m

¢
n
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m=1 m

+ 2 (" é.‘k” )(‘n 2 ) 2 2 + sss
i(l)"l 3% ox% 9% ,,.axw oy’
1(1)<1(2) 310 iy U1 In ®
3% (yM (2

, m

+ (- ‘EL) sso{e ?_‘P_.._) _8___;; 1 + (lower crder terms)

9x 9% ax'
jl jm n
m+1 m m+l

) z 3%’ 3x’ *1 (1) « ?, ‘ : 3 ?

X" see0%x"' 9x i(1)=1 X x' ,ee9x’ x!
1 In dnn ji"ji(l) ji(l) 34 Jp¢r D
o ]

+ " (-’ 'a-L )(" al” ) am+l + cee
1(1)=1 ox, 3x o) . 40x) ax! 2
1(1)<1(2) 1(1) iy h w1
ji*ji(l)"ji(Z)

+ (- z"’ Yeorlo a“’ s 4 a‘” )

x x x! X b4 x? Le.0x! 3x
3 b T ® LT N1 I

+ = ;
1(1)=1 ax ij axj ...axj ax;
APLAFEN 1(1) m+l 1 m
mel m+1

+ 2 e e 2
1i(1)=1 9% ij axj ax:’] e,.axg ox
1(1)<1(2) Jiq1) 1(2) w1 m
138 yMi

mtl
+ ese (vﬂ‘“‘“) N CLd ) 2 + (loweyr order terms)

% 3% axrmtl
i, a1 ?
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Jm+l Tl w1
) 3% ox*® ox? ¥ Zi(l) i - %ﬁh ) : 0 ?
%% ase0x’ Ix = x %! ..0%’ =’
3y dm Imb1 15%35 (1) Jiqy 1 Jm+1 ©

m

m+l
+ Z (’-‘ 212‘“ )(GB ?L ) 3 2 + )
i(l)’gl ox 34 ax’ oeaax3 Bx;
1(1)<1(2) J1cy iy h e
1385 yMi
m+l
+ ("-?'L") ao e ("" alll )a m+("’ aw ) XK
axj ij 8x3 ox’ Ix
i m mt+l ° j1
mbl
(= 2y ) 3 vl (lower order terms).
axj Bx,',m

mt+l p

Hence, we have proved the result by induction.
qed
We are ready to prove the following theorem which shows us the

invariance of the system (A(x,D),{Bj}) with respect to 6.

Theorem 5,22,1, Let us consider the system (A(x,D),{Bj}) such
that for any X e 3§,

[+ ] s ]
9 1 9 n
A (XQD) w8 a4 (““""“') XX} (""’“”)
0 Z|a|“2m o axl axn
h h
) 1 5 T
B (XED) £ b (m ) e 88 ]
jo zlhlsmj jh Bxl axn

with constant coefficients a,, bjh° If 0y is the transformation
defined in (5-14), (5=15) and (5-16) such that the system is invariant

with respect to 64 , then the transformed system under 8, is (A(x,D),
2

{5%}) with principal parts
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o [+

cﬂb(O,D) =3 z aa( E%T’) @ e ( gg?n) n

h

h1 ( 3 ) n
-] "5‘}'{"’

8. (0,D) = byp (e )
3500 " by P B

or, equivalently, the system (A(x,D),{Bj}) is invariant with respect
to eia

Proof. Since, after the transformation 64 *6, , at
X" 0 0 " a
= (04s4450), x; = O is the tangent hyperplane, then Siw-(o,,..,O)
k

=0 for 1 < k < n, Hence, from lemma 5,22,1, we have at X" = (0,,,,,0)

- + (lower order terms),

We can then see that, for any X € 9Q, after the transformation 91,

[+ o o o
] 1 3 n 9 1 3 n
A (X,D) =] a (F==) Tiii(z==) = ) a (5=r) Teee (v
o e |a|=2m o axl axn IaIEZm o axl axn

+ (lower or?er terms)
h h h h
9 1 3 n
B (X D) = b (“”“9 eeo(‘””o = z b (="T9
jo&e zlhl"mj ih 3}:1 axn lhl'mj jnrta

4+ (lower order terms),

Therefore, since we can ignore the lower order terms, the transformed

system (S (x,D),{ ﬁ%}) has the principal parts,
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qed

Remark 5.22.,2, We can see from this theorem and definition

5.22.1, that if we have the strong complemehtary condition holding for
only one point X ¢ 30, and if the system satisfies the hypothesis of
theorem 5.,22,1, then the strong complementary condition for {Bj}?:é
must hold for every point x € 32. This proves the following equiva~-
lent definition of the strong complementary condition.

Theorem 5,22,2, Let us consider the system (A(x,D),{Bj})

defined as in theorem 5.22,1, where A(x,D) is strongly elliptic, the
coefficients are constant and the system is invariant with ressect to
81 « Since 30 ¢ C”, we can consider the point X ¢ 3Q such that the
taigent hyperplane at X is parallel to X, = 0, and the normal vector
to 3@ at X is parallel to the x -axis, {Bj}?:é satisfies the strong
complementary condition if and only if for every X > 0, letting

£' = (05004,0,1) beithe outward normal vector to the boundary at X,
and § = (£1°°‘°’€nwl’0) be in the tangent hyperplane to 3Q at X, the

polynomials in the complex variable 7,

Bjo(X,c‘H'TE?) = Bjo(xs(s‘]_’”"’gnwler))

h h h
- 1 n-1_"n
Z|h|ﬂ‘n bjh£1 aeegn“l T (0 ;j :wm l)
h|



are linearly independent modulo the polynemial

m
M*(Esl) = I (T”Ti(gex))
k=1
where Tﬁ(g,k) are the m roots with positive imaginary part of the

polynomial

(“l)on(xsg"'TE') + A= (“‘1)mA°(Xa(€1v‘°°9€n9197)) + A

m % %he1 %
P Zlal-zma"gl sesfp A

Remark 5,22,3, Now we can see that if the given system

(A(x,D),{B,}) satisfies the hypothesis of theorem 5.22.1, then it

h]
suffices to verify the strong complementary condition at one point

X ¢ 30, in order to have the boundary operators {Bj} satisfy the strong
complementary condition for every point on the boundary, If the

system does not satisfy the hypothesis of the theorem, then we must go
back to definition 5,22.1 and use the transformation 64, for every

X g 9, to verify the strong complementary condition,

Remark 5.,22,4. Schechter showed in [28] that, after the

transformation, eig any boundary operator can be placed in the follow-

ing form

5 mj Myl 3 k
By (x,D) = by(x)( ,5,,5) + Xkao Tyeq .,5.;)

where Tkj are tangential partial differential operators of order

% my=k involving only the variables Xfp%p'geeey*y 7. This leads us to
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the equivalent definition of a normal set given by Gerd Grebb [12] and
found in definition 5,.21.3,

Finally, to conclude this section, I will give an example of
an operator which is invariant with respect to 04.

Example 5,22,1, Let us conasider the operator

AGx,D) = (-1)5aF

where A is the Laplacian operator

A = Xn (-2-—-)2.
i=1 %4
We assert that for every positive integer k, the operator is invariant
with respect to the transformation, ei.
Proof. It suffices to prove that this operator verifies the
hypothesis of theorem 5.22.1, First, we see the coefficients are con-
stant. We will now show that the operator is invariant with respect to

84 » Let us define the transformation
2

n
o= L 2 Oegy) Lshzm
i=1

where X = (Xl,..,,Xn) is any point on 3Q, and the coefficients, apy,

satisfy
I @enen
im]
n
I a8 =0 (h # 2)



We will prove this assertion by induction om k.

Let k = 1, then from the chain rule

2
(2 _.)2 = a.a
(231 Xh,;u--l hied o tax?
ho* e
and from the definition of 04 04 &
2 "1
n n n 2
&= (5=)"=1_1 841301 SEvERT
im1 9%y 1=1"h,g=l CEMEN
1 n
a2 52
=] "'2 I #ng8py ey
i=1"het=l s 3“ im1 hg hi%ed aXpax,
I L@ k
= ( )2 —~r )2 + ( 8p4804) Sy
heg=l 1-1ahi i1 TN

n 2
"L

Assume that for k = m,

n
17" = D] (
i=1

Let k = m+l, we have

) 2im _
7y YO = (1)

wl bkl m+1[z 2™

(-1)" "a

- (e1>mtz

1= 9%y

L DI

i=1 xi

. ] <.m?9 2™ (= 1){2
iwl

2.m
( = )]
Zinl Xy

FINL

q=1 3x

24
xi
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n
m+l
= D] (Eh
i=1 i
Hence, we have proved the assertion.
qed
5:23, General Boundary Operators, the Case n = 1

In the study of the stability theory of certain elliptic

partial differential equations

ou(x,t)

+ A(x,D)u(x,t) = £(u)
at

where u(x,t) acts on x[0,*) and Q C?Rn, we need to consider the case
n=1, In the previous sections we discussed only the case Q(:’Rn,
n > 2, For the one dimensional case, n = 1, we need to discuss linear
differential operators with general boundary conditions, and in this
gection, we give the following hypothesis on the system (A(x,D),{Bj}).
This discussion is found in Agmom [1].

Let us consider the elliptic linear differential operator
| 2m~k

. 2m
Ax, §;~) . Zk Oak(x) ( %;=) x € [a,b] (5=20)

where == < 8 < b < «», and the boundary operators

4 +
+, 2 my o4+ 5 My
e = sl

0 < § < mel) (5~21)

wn

S
b, { =)
heo I O

mj =h

-, 0
Bj("é";")”z
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satisfying the boundary conditions

+, 3 - 3
Bj( _53_; )U(x) |xab = Bj( -a-;? )u(x) Ixaa = () (0 :_j j_m«-l)

(5-22)

We give the following conditions on (A(x, %_,)Q{B;},{BS})
x

(1) ak(x) are complex-valued, measurable and bounded on
[a,b] (1 <k ime), and ao(x) is continuous on [a,b]}.
(i1) A(x, %;-) is strongly elliptic on [a,b], that is,

for every x ¢ [a,b],
(—1)mRe[a°(x)] > 0, (5=23)

+, 9 -, 3
(1i4) Bj( A Y, Bj( e Y, (0 £ 3 £ m=l) are linear
differential operators with constant coefficlents
of respective orders m?, ms < 2m~1, and are inde-

pendent of time,t,

=]
(iv) The operators, {B;}? are linearly independent,
=() :
Also, {B;}?'; are linearly independent.

Remark 5.23,1. The boundary operators

B;u(x)| = ( %i.)ju(b,t) (0 <3 <m1)(t > 0)
x=b

- w3 i
Bju(x)lx“a (3= u(a,t)

which are the Dirichlet boundary operators for the case n = 1, satisfy

(5=23) for any strongly elliptic operator with coefficients satisfying
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(5=23(1)), since {( %; )ju} are linearly independent, with orders
m;'sm‘g =1 <2m-1 (0 <] <ml),
The following proposition, found in Agmon [1], shows how these

conditions for the case n = 1, can be related to those for n > 2.

Proposition 5.23,1., Let us define

3

]

9 m, 3 2m
)“A(X.s;;)+(~l) (-5-;) .

If A(x, %;';') is strongly elliptic on [a,b], we have the following

results:

(i) £ is elliptic, and is properly elliptic on
Q= {(x,t) | a £x <b, == <t <},

m=-1 =l
(11) £ and the boundary system {B.;}j_o. {B.‘l }?-0, satisfy

the strong complementary condition on x = b, x = a,

regpectively.
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6.0. STABILITY OF SOLUTIONS TO THE GENERAL

BOUNDARY VALUE PROBLEM: g—;‘i’iﬁl + A(x,D)u(x,t) = £(u)

Many engineering and physical problems can be formulated as an
initial~boundary value problem for a partial differential equation. In thds
chapter, we will be considering the following noniinear initial-boundary value

problem which has many physical applications,
WO 4 AGDulx,t) = £(w) XEQ, £20 (6-1)

with the general boundary conditions

Bj(x,D)u(x,t) = 0 xe€9Q,t>0 (0<j<m-1) (6-2)

and the initial condition

u(x,0) = uo(x)

where u is a vector valued function, such that for every >0, u(x,t) is

in some Hilbert space, A(x,D) is a linear partial differential operator and
f is a nonlinear function defined on some prescribed function space.
Sufficient conditions &ill be given on the system (A(x,D),{Bj},Q) and on
the nonlinear function, f(u), to ensure the existence, uniqueness and -
stability of a solution to the above partial differential equation. This
is done by considering the extension of A(x,D) to an abstract (unbounded)

linear operator A defined on some base Hilbert space, H, and considering

the abstract operator evolution equation

dult) 4 pAue) = £(u) (£>0)
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and utilizing the results from Pao [23] on the stability criteria for the
evolution equation to ensure the solution of the stability problem for
£6-1) and (6-2). If f{u) = 0, then the abstract operator equation

becomes

o) 4 guit) = 0 (£>0) (6-3)

u(o) = uo,

In this chapter, we will consider the problem (6~1) and (6-2),
for the cases where f(u) = 0, and f(u) is a nonzero nonlinear function
given in some function space, and QCRn,qzi. We will also show that these

regults generalize the case for the Dirichlet problem worked out by Buis

[7]1. Most of this discussion is restricted to the real Hilbert space LZ(Q)°

The extension to the complex space can readily be done.

6.1 Preliminaries

In sections 6.2 and 6.3 we will examine the initial-boundary

value problem given in (6-1) with f(u) = 0, or

2U0LE) 4 AGx,D)ulx,t) = 0 XeQ,£>0 (6-4)

with general boundary conditions
Bj(x,D)u(x,t) = xedQ,t>0 (0<j<m-1)

and initial condition

u{x,0) = uo(x),

In order to examine the stability problem for (6-4), we need to use the

results of Pac in [23], in which he solves the stability problem for the
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abstract operator equation (6-3), where A is the abstract operator

extension of A(x,D) defined in the real Hilbert space, H = LZCQ), such

that D(A) is dense in H and R(A)tH. 1In this section, we will give these

results and others needed in order to solve the stability problem for (6-4).
First, we must define what is meant by a solution of the

operator evolution equation (6~3).

Definition 6.1.1. wu(t) is a solution of the equation (6-3)

with initial condition u(0) = uoeD(A) if:

(1) u(t) is uniformly continuous in t, for every t>0, with
u(@) = u s

(11) u(t)eD(A), for every t>0, and Au(t) is continuous in t;
for every t>0;

(ii1) the derivative of u(f} exists (in the strong topology)
for every t>0 and equals —~Au(t).

Definition 6.1.2. An equilibrium solution of €6-3) is a solution

u(t) of (6-3) such that

Hu(t)-u(O)HH = 0 for every t>0.

The following lemma proved in [27] is very useful in establish~
1’
ing the sufficient conditions for the existence and stability of the
equilibrium solution to the operator evolution equation (6-3).

Lemma 6.1.1. (R.S.Phillips) Let A be a linear operator with

domain D(A) and range R(A) both contained in the Hilbert space H and D(A)
is dense in H. Then A genevates a contraction semi-group of class (CO) in
H if and only if A is‘dissipative with respect to an inner product

equivalent to the one defined on H, and R(I-A) = H.

The following result by Pao in [23] utilizes lemma 6.1.1,
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and is a basis for our examination of the stability problem of
equation (6-4). Pao's notation has been changed so his results could
be used in the present context.

Lemma 6.1.2, (Pao) Let A be a linear operator with domain
D(A) and range, R(A) both contained in the Hilbert space H and D(A) is
dense in H and R(I-(-A))= H. If A satisfies the following inequality,

there exists a constant B>0 such that for every ueD(A)

(o, -0 < -8]|ul |2

where e is the inner product equivalent to the one defined on H, then
for every initial element uosD(A), there exists a unique éolution, u(t),
of (6-3) such that u(0) = u and

(1) Any unperturbed solution is asymptotically stable 1f B>0
and is stable 1f B=0,

(ii) A stability region is D(A) which can be extended to
the whole space H.

(iv) If 0eD(A) and A(Q) = 0, then 0 is an equilibrium solution,
called the null solution.

The basic ?onditions needed to solve the stability problem of
(6~4) is dissipativity of -A and R(I~(~A))= H. To prove the second part
we need to use the next two results by Friedman [11] and Komura [16],
respectively.

Lemma 6.1.3. (Friedman) If (A(x,D),{B,},Q) is the system

]
satisfying the conditions (i)~(v) in (5~9), and A 1s the operator extemsion
of A(x,D) in the base Hilbert space H = LZ(Q), then there exists a

constant Ao > 0, such that for every A z.A;



ROI - (-4)) = L2(2).

Lemma 6.1.4. (Komura) If A is the operator defined in

lemma 6.1.3 and ~A is dissipative, and there exists a constant o > 0

such that R{(al ~ (-A)) = LZ(Q), then for every a > 0

R(aI - (-A) = L2(@).

6.2. Stability of the Solution of a Linear

Initial-Boundary Value Problem for the Case n > 2

In this section, we will give sufficient conditions to ensure
the existence, uniqueness and asymptotic stability or stability of the
equilibrium solution to the general boundary value problem defined below
in (6~5).

Let us consider the following initial-boundary value problem,

-%%SE*EL + A(x,D)u(x,t) = 0 xeR, t>0
Bj(x,D)u(x,t) = xe9Q,t>0 (0<j<m-1) (6-5)

u(x,0) = uo(x)

where A(x,D),Bj(x,D) are the partial differential operators defined by
a
A(x,D) = Z|a|<2m aa(x)D

ByGuD) = [yt bjh(x)Dh (0<j<m-1) (6-6)
-1

such that the system (A(x,D),{B,},2) satisfies the conditions (5-9) and

3
(6-7).
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There exists a constant 8>0, such that for every uecz(Q)
(u,-A(x,D)u) < -8||u]|?
? > o - o’ (6-7)

First, let us define H = LZ(Q), where this discussion is
restricted to the real Hilbert space, LZ(Q). Let us now define the abstract

operator To’
0
D(To) = CB(Q)

(Tou)(x) = A(x,D)u(x) ueD(To). (6-8)
. 2
Then, To is a linear operator such that D(To) is dense in L (), since
C:(QX:CE(Q)CLz(Q) and we know from Dunford-Schwartz [9], C:(Q) ig dense in

L2().

Let us now define the abstract operator A,

D(A) = Hﬁ“‘(sz ) (6-9)
and Au is the function in LZ(Q) defined by

(Aw) (x) = A(x,D)u(x) ueD(A).

Since A(x,D) is linear, we see that A is a linear operator. We will show
that A is the smallest closed linear extension of To in L2(Q), where we
have defined H= LZ(Q).

We then obtain the following evolution equation

Qﬂé%l + Au(e) = 0 (6-10)

u(0) = u
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where u(t) is a vector valued function defined on [0,®) with values in
LZ(Q), Thus, for each t>0, u can be regarded as a function u(x,t)st(Q).
A 1s the linear unbounded operator with domain and range both contained in
12(@)" defined by (6-9).

We must define what is meant by a solution to equation (6-5),
which is found in Friedman in [11].

Definition 6.2.1. wu(x,t) is a generalized solution of (6-5)

if u(t) is a solution of (6~10) in the sense of definition 6.1.1.

Definition 6.2.2. u(x,t) satisfies the boundary condition

Bj(x,D)u(x,t) = 0 (0<j<m-1)

in a generalized sense if for each t>0, u(x,t)eﬂgm(ﬂ).

We will need the following two very important inequalities in
order to prove that A is a closed operator. The first inequality is found
in [11], and the second shows that A is a bounded operator on its domain.

Lemma 6.2.1, (Friedman) If the system (A(x,D),{Bj},Q)

satisfies (5-9), then there exists a constant Co > 0, such that for every

2m
ueHB «)

ull,, < ¢, laGDull, + [lul],).

Lemma 6.2.2, If the operator A is defined as in (6-9), then

there exists a constant C1 > 0, such that for every ueD(A)

[aull, < c;l1u] ]y

Proof. First, I must prove that for every u,veLZ(Q),

Hu+ w112 < 2011l 12 + [19]12).
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This is true from fact that for a,b>0, Zabgaz + bz, and

o+ v l12 < Ul + Vvl %= [al 12+ 2]l ] |19l + [Iv]12

A

2 2
Hall2 4+ dluall2 + vl 12 + vl 12

2(]ul % + [Iv]1D.
[o] (o}

If we let Co = maT Iaa(x)|, then for some integer k independent of u, we
a|<2m

xeQ

have for every ueD(A)

[ewl12 = [1a0rel 12 = 1] [)y|con 2% 0"l

A

k 2
2 2|a|_<_2m I laa(x)DauI IO

|A

k .2 o 2
2 2
= ?_k»COHUHZm s

Therefore,

St

IIA“IIO.S Clllu||2m, vhere C, = 2°C_. qed

We will now prove that A is the smallest closed linear
extension of To in LZ(Q).

Lemma 6.2.3. The operator A defined in (6-9) is a closed

operator in LZ(Q),

Proof. We must show that if there exists a sequence u,eD(A)

i

such that



u, %+ - u, and Au, 3+ W as i1 + =
i LZ(Q) i L2(Q)

then ueD(A) and Au = w. First, we will show there exists veHzm(Q), such

109

that
u —> v as i +» o,
i HZm(Q)
Indeed, let us consider u, — u,eD(A). We know, since u, converges in LZ(Q),

17 Y 1

||ui - ujllo ;1 o as i,j - =,

From lemma 6.2.1, there exists a constant Co’ such that
oy = w11y < 00 Taug-u 1)+ [ag-u, 11,1

Since u, converges in LZ(Q) and Au, converges in Lz(ﬂ), the right side

i i

converges to 0 as 1,j - «». Hence,

u 0 as 1,j » =,

- u —
1 3 HZm(Q)

2
Since H m(Q) is complete and we have Cauchy convergence, this implies

there exists a veHzm(Q) such that

u -ty as 1 + o,
i HZm(Q)

We will now show ueD(A) = Hgm(ﬂ). To see this, we need to show there

exists a sequence unECZ(Q) such that

u 21;* u as n + @,
)

Indeed, we have the following inequality, since the identity injection from
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Hzm(Q) into LZ(Q) is continueus, or ]|°|Io §_Czll°l|2m
9

vl ], < a1+ vl ] < a1+ ¢yl luvl],.

We have proved that the right-hand side converges to zero, as i -+ =,

Therefore, u = veHzm(Q), which implies
Hui—qum = Hui—szm %O as 1+ =

Where uieD(A). Let us pick, arbitrarily, € > 0. There exists a u,eD(A),

i

such that Ilui—ullzm < %w By definition of D(A) = Hgm(ﬂ), there exists
o 3
un(i)eCB(Q), such that llun(i) - uiiIZm <5

Therefore,

llun(i) - ullzm.i Ilun(i) - uiIIZm + llui - ullzm < E.

This shows that ueD(A) = Hgm(Q). Finally, we must show Au = weLz(Q).

Indeed, let us consider u, - ueD(A). From lemma 6.2.2,

i
|law, - auf|_ = |laty, - ol < clle, = o]l
Since the right hand side convexges 'to zero as i + =, we see

Au - Au- as 1 > o,
i LZ(Q)

From the inequality

aw = wll_ < [lau - aw [| + |[au, - wl],

where we have seen that the right hand side converges to zero as 1 + =,

it follows that Au = wsLZ(SZ)e Hence, I have shown that A is a closed
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operator in Lz(ﬂ), qed

Lemma 6.2.4., A is the smallest closed iinear extension of To
in L2@).

Procf. By the definition of the extension of To in LZ(Q), A is
the smallest extension of To in LZ(Q) if and only if the domain of A,D(A),

is the set of all ueLz(Q) such that there exists a sequence u eD(To), such

i
that

Hui - ullo ;1 0, HToui - Aullo ;l 0 as 1 » =,

Since A is a closed extension of To in Lz(ﬂ), it is obvious that A
contains the smallest closed extension of To in LZ(Q). Therefore, it

suffices to show that for any ueD(A), there exists a sequence u eD(TO),

i
such that

- Au”o 1 0 ags i + =,

- |
Hui u||o ;1 0, and l,Toui .

To prove this, let ueD(A) = Hgm(ﬂ). Then, by definition of Hﬁm(ﬂ),
00
there exists a sequence uieCB(Q) = D(To) such that Hui - u]lzm + 0

as i + », But we know, since u, - ueD(A), from lemma 6,2.2}

i
IIAui - Au”c = HA(U‘i = u)Ho = Clllui - u”zm’

Therefore,

||Aui - Aullo ;1 0 as 1+ =,

Since the identity injection from Hzm(ﬂ) into LZ(Q) is continuous

”ui - ullof_ Czllui - ullzm
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and we have the following inequality

HToui - Aul]o §_I|Toui - Auillo + HAui - Aul 0°

Since uieD(Toy:D(A), Toui = Aui, Hence, we have the result

Hui— ullozlo and HToui—AuHo;lo as 1 + «

and this shows that A is the smallest closed linear extension of T0 in
2
L°@®). qed
Now we will prove the facts needed to use Lemma 6.1.2, namely

the dissipativity of -A, and the fact that R(I~-(-A)) = H.

Lemma 6.2.5. For the closure, A, of To in LZ(Q), - A is
strictly dissipative with respect to the L2 - norm if B > 0, and is
dissipative if B8 = Q.

Proof. From the hypothesis (6-7), we see that there exists a

constant B > 0, such that for any usc;(n) = D(To)

(w, T w_ < -6 [[u][2.

Since D(TO) is dense in D(A), we know that for any ueﬂém(ﬁ) = D(A), there

exists a sequence u eD(To) such that

i

u -+ u as i > =,
i HZm(Q)

We must now prove that

(ugAu)° = 1im (ui,Aui)o,

{0

To show this, we utilize the following two inequalities,



oy = wlly < ¢ llug = ully
|2y - aal| = [acy = w1, < ollu = ull,-

This shows us thit

u = v and Au => Au as 1 + o=,
i LZ(Q) i LZ(Q)

Due to the continuity of the inner product, we have proved that

(quui)o ;1 (u,Au)° as 1 + =,

Since ueD(A), uiED(To)CD(A) and Aui = Toui

(u,(—A)u)0 = 1im (ui’(---A)ui)o = lim (ui,(—To)ui)o

i 10

2
< -8 Lim |[u]]7

i
2
= =g [la]|2.
From this inequality, we can see that if 8 > Q, =A is strictly

dissipative, and if B = 0, ~A is digsipative. ged

Lemma 6.2.6. A is a linear operator, such that the domain

D(A) and range R(A) are both contained in the Hilbert space LZ(Q) and D(A)
is dense in Lz(ﬂ), Also, R(I ~ (~A)) = Lz(ﬂ).

Proof. It must first be noted that we have defined our base
Hilbert space to be H = LZ(Q)u A is a linesar operator, since A(x,D) is

linear. Also, it can readily be seen that

D(A) Him(sz)cLz(ﬂ), and R(A)ELZ ().
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The fact that D(A) is dense in LZ(Q) follows since D{A) = Hﬁm(ﬂ), and
C:(Q)CC;(Q)Cﬂém(Q)CLZ(Q), where C:(Q) is dense in LZ(Q), It sufficas
now to show R(I -~ (-A)) = LZ(Q). We know from lemma 6.1.3, that by the
definition of the operator A, there exists a constant Ao > 0, such that

for any A > Ao

ROI-(-4)) = L2(),
and since -A is dissipative, we utilize lemma 6.1.4, to show that for any
A >0,

ROI-(-4)) = L2(@).

Therefore, if we let A = 1, we have the desired result. qed

We are now ready to prove the nain result of this section.

Theorem 6.2.1., Let us consider the strongly elliptic partial
differential operator, A(x,D), and the boundary operators, {Bj}?;é’
},Q) satisfy conditions (5-9) and

defined
by (6-6). Let the system (A(x,D),{Bj
inequality (6-7). If we consider the initial-boundary value problem
(6~5), then for any given initial value function uo(x)eﬂgm(ﬂ), there
exists a unique generalized solution, u(x,t), such that

(1) for every t>0, u(x,t)eﬂgm(ﬂ);

(1i) 1#(x,t) is a generalized solution of (6-5);

(iii) wu(x,0) = uo(x), and satisfies the boundary conditions
in a generalized sense;

(iv) the null solution is stable
if 8 = 0 (and is asymptotically stable if B > 0) with respect to the
L2 - norm, where 8 is the dissipativity comstant in (6-7).

Proof. We define the evolution equation as we did before

E%LEL + Au(t) = 0
t
u(0) = u,
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where the abstract operator, A, is defined by

2m
D(A) = HB )

(Au) (x) = A(x,D)u(x) ueD(A)

and 1s the smallest closed linear extension of the operator To defined in
(6-8).

From lemma 6.2.6, A is a linear operator, such that the domain D(A) and
range R(A) are contained in the base Hilbert space H EIF(Q), D(A) is
dense in LZ(Q), and R(I-(-A)) = LZ(Q). From lemma 6.2.5, —-A is strictly
dissipative 1f B > 0 and is dissipative if B = 0, where B is the
dissipativity constant in (6~7). Now, we have satisfied the hypothesis
in lemma 6.1.2, and by applying Pao's results, we see that for every
uosD(A) = Hém(ﬂ), there exists a unique solution u(t) of (6-10) satisfy-
ing u(0) = u . Therefore, from definition 6.1.1, and 6.2.1, u(x,t) is

a generalized solution of €6-5), and for every t>0, u(x,t)eﬂgm(ﬂ). This
implies, from definition 6.2.2, that u(x,t) satisfies the boundary con~
ditions in a generalized sense. Since u(0) = u_, we see u(x,0) = uo(x),
the given initial value function in Hgm(ﬂ) = D{(A). Since u(t) = O¢
Hgm(ﬂ) = D(A) and A(0) = 0, we see the null solution is stable if 8 = 0

(and is asymptotically stable if B > 0) with respect to the L2 - norm. qed

6.3. Stability of the Solution of a Linear

Initial~Boundary Value Problem for the Case n = 1

In this section, we will give sufficient conditions to ensure

the existence, uniqueness and the stability of the null solution to the

general boundary value problem defined below for the case where Qﬂ(a,b)t‘:Rls

and —=<a<h<e,



Let us consider the following initial-boundary value problem,

22068 4 A utx,t) = 0 xe (a,b) , £20
t ox
B, GRutn )|y = B GRu o), = (£20) (6-11)

u(x,0) = uo(X)

m—é’ and {B'-}m-l are the partial differential operators

where A(x,gx {BT} 37 4=0

j'i=
as defined in Agmon [1],

2m 2m-k

AxaD) = [0 e 0 &

+ oFon

2 ()j
(6-12)

j
2h-O Jh )

such that the system (A(x,gx) {Bj j}) satisfies the conditions (5-23).

Let us now define the following Hilbert spaces needed to extend A(x;%;)

to the abstract operator A,

2m-1 d 2m -1

[a,b]] (G5

in [a,b], and (‘%{‘)zmu(X)stla,b}}

2m[a,b] = {ueC u(x) is absolutely continuous

2m - 2m +,9 _ n— g9
He [a,b] = {ueH [a,b]lBj(ax)u(x,t)lxab = B, GPu,0)] =0,
(0<jsm-1) (t20)}. (6-13)
We can now define the abstract operator A

D{A) = H [ sb] (6~-14)
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(Av) (%) = A(xa)u(x) ueD (A)

Remark 6.3.1. From Agmon [l1], we see that A is a closed

linear operator such that the spectrum is the whole plane or a discrete

sequence of eigenvalues.

We then obtain the evolution equation

QﬁéEl + Au(t) = 0 (6-15)

where A is defined as in (6-14), and D(A) and R(A) are both contained
in the real Hilbert space H = Lz[a,b].

Let the operator A(x,D) satisfy the following inequality &
there exists a constant 8 > 0, such that for every ueHgm[a,b]

(a,-A0x,2w)_ < 8] [ul li (6-16)

where B is called the dissipativity constant.

In order to consider the stability problem for the case n = 1,
we need the following lemmas, the first being found in Agmon [1].

Lemma 6.3.1. Let A be the abstract operator extension of
A(x,%;) defined by (6-14), where the system (A(x;%;),{B;,B;}) satisfies

condition (5-23). Then, there exists a constant A0>0, such that for

any A>Ao,
2
R(AI~-(~-A)) = L [a,b].

In order to use Lemma 6.1.2 to solve the stability problem,

we must now show the dissipativity of -A, and R(I-(-A)) = H.
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Lemma 6.3.2. Let the operator A be defined as in (6-14). The

operatow ~A is strictly dissipative with respect to the L2 - norm if
B > 0, and 1is dissipative if B = 0, where B is the dissipativity constant
in (6-16).

Proof. This follows readily from the definition of A, and

condition (6~16), since for every ueD(A) = Hgm[a,b],

(u, (-8)0) | = (u,=AGx,3)u)

2
h ‘Bllullo- qed

Lemma 6.3.3. The abstract operator A is a linear operator

such that the domain D(A) and range R(A) are both contained in the real

Hilbert space HELz[a,b], D(A) is dense in Lz[a,b], and R(I-(-A)) = Lz[a,b].
Proof. It can be readily seen from the definition of A(x,D),

that A is linear, and the domain D(A) and range R(A) are both contained

in Lz[asb]

Also, D(A) = Hgm[a,b] is dense in Lz[a,b], since C:[a,bkzﬂﬁm[a,b]cLz[a,b]

and C:[a,b] is dense in Lz[a,b]. Finally, we must show R(I~(-4)) = Lz[a,b].

From lemma 6.3.1, and since —-A is dissipative, from Lemma 6.1.4 we have,

since there exists a constant AO>O, such that for every Aon

R(\I-(-A)) = L2[a,b]
then it must be true that for every A > 0
2
R(AI-(-A)) = L [a,b].

This leads us to our regult by letting A = 1. qed
We are now ready to prove our main stability result for

the case n = 1.
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Theorem 6.3.1. Let us consider the strongly elliptic linear
9 +.m=1 —-ym=-1
differential operator, A(x;g;), and boundary operators {Bj}j=0 and {Bj}j=0'
-
defined by (6-12). Let the system (A(x,%;),{Bj,Bj}) satisfy (5-23) and

inequality (6-16). If we consider the initial-boundary value problem (6-11),

then for any initial value function uo(x)eﬁgm[a,b], there exists a unique
generalized solution, u(x,t), such that

(i) for evexy t:p,u(x,t)eﬁim[a,b];

(ii) u(x,t) is a generalized solution of (6~11);
(i11) u(x,0) = uo(x), and u(x,t) satisfies the boundary conditions

in the classical sense;

(iv) the null solution, is stable if B = 0 (and is asymptotically
stable 1f 8 > 0) with respect to the L2-norm, where B is the dissipativity
constant in the equality (6-16).

Proof., We define the evolution equation as we did in (6-15).
where the abstract operator, A, is defined by (6~14) and A is a closed linear
operator. From lemma 6.3.3. we see that D(A)CLz[a,b],R(A)CLZ[a,b], D(A) is
dense in Lz[a,b] and R(I-(-A)) = Lz[a,b]. From lemma 6.3.2, -A is strictly
dissipative 1f B > 0 and is dissipative 1f B = 0, where B is the dissipa-
tivity constant in (6-16). We can now apply the results of lemma 6.1.2, and
see there exists a unique solution u(t) of (6~15), such that u(Q) = u and
from definition 6.1.1, for every t>0, u(t)eD(A). Therefore, from definition
6.2.1, u(x,t) 1s a generalized solution of (6-11) such that for every t>0,
u(x,t)eD(A) = Hﬁm[a,b] and u(x,O) = uo(x). From the definition of Hﬁm[a,b],
we see that u(x,t) satisfies the boundary conditions in the classical sense.
Since u(t) = Oiﬂﬁm[a,b] = D(A), and A(0) = 0, we see the null solution is
stable if 8 = 0 (and is asymptotically stable for 8 > 0) with respect to

the Lz—normo qed
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6.4. Stability of the Solution of a Nonlinear

Initial-Boundary Vafue Problem

In this section, we will give sufficient conditions to ensure
the existence, uniqueness and stability of the solution to the nonlinear

initial-boundary value problem

5t + A(x,D)u(x,t) = £(u) xeQ,t>0
Bj(x,D)u(x,t) =0 xedf, t> 0 (0<j<m-1)

u(x,0) = uo(x)

where A(x,D) is a strongly elliptic partial differential operator, and
{Bj}?:é satisfies general boundary conditions, and f(u) is, in general,
a nonlinear function catisfying certain conditions in some prescribed

Hilbert space. In order to study this nonlineaz problem, we need to utilize

the results of Pao [23] in solving the stability problem for the nonlinear

evolution eguation

%‘tif-t-)- + Au(t) = £(u)
u(0) = u

where A is the abstract operator extension of A(x,D), such that the domain
and range of A are contained in some Hilbert space H. In 6.4%1, we will

consider the case QCRn, n>2 and in 6.42 we will look at the one dimensional

case Q = (a,b)CRl.

6.41. The Nonlinear Stability Problem for the Case n > 2
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In this section, stability criteria will be given in order to
solve the nonlinear initial-boundary value problem defined on QfRn, for the
case n > 2.

First, we must state some preliminary lemmas which will give
sufficient conditions to ensure the existence, uniqueness and stability of

the solution to the operator evolution equation

(6-17)

Cu(0) = u uo€D(A)

where A is the operator wepresentation of a strongly elliptic partial
differential operator, A(x,D) with general boundary conditions and f(u) is,
in general, a nonlinear function. We must define what is meant by a

solution to (6~17).

Definition 6.41.1. wu(t) is a solution of (6-17) if

(1) for every t>0,u(t)eD(A) and u(0) = u 3

(11) u(t) is uniformly Lipschitz continupus in t;

(iii) the weak derivative of u(t) exists for every t>0, and
equals (~A)u(t) + £(u);

(iv) the strong derivative

QuE) - -A)u(e) + £(w)

exists and is strongly continuous except at a countable number of values

of t.

The following key result and solution of the nonlinear stability
problem for the evolution equation (6-17) is due to Pao [23].

Theorem 6.41.1. Let A be a linear operator with domain and range
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both contained in the same Hilbert space H, such that D(A) is dense

in H and R(I-(-A)) = H. If A satisfies the following inequality: there

exists a constant B > 0, such that for any ueD(A)

(u, (-8)w), < =8| [u]|2 (6-18)

where (.,.)e is an inner product equivalent to the one defined on H; and
f satisfies:

(i) £ maps all of H into H, where f is continuous from H with
the strong topology to the weak topology and f is bounded on every bounded
subset of H.

(i1) There exists a constant k < B8, k can be negative, such

that for any u,veH
(f(u)-—f(v),u—v)e g_k]lu—vl]i (6-19)

where B is the dissipativity constant in (6-18), and ("°)e is the inner
product equivalent to the one on H. Then, for any uoeD(A), there exists
a unique solution u(t) of (6-17) with u(0) = u s and the null solution,
if £(0)=0, is asymptotically stable if k < B, and is stable if k = B, with
respect to the H — norm.

An important subclass of nonlinear functions, f, satisfying the
conditions in theorem §.41.1, is the class of Lipschitz continuous functions.
The following result is a corollary in [23].

Corollary 6.41.1. Let A be the abstract operator satisfying

the hypothesis of theorem 6.41.1, and f satisfies:
f is defined on 2ll of H into H, and f is Lipsghitz continuous
with Lipschitz constant k < B, that is, there exists a constant k < 8,

such that for any u,veH
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HE@-£) ||, < k] [u-v]] .

Then, for any initial wvalue function uoeD(A), there exists a unique
solution, u(t), of (6-17) with u(0) = u s and the null solution, if it
exists, 1s asymptotically stable if k < B and is stable if k = B, with
respect to the H - norm.

Let us now consider the following nonlinear initial-boundary

value problem

%%SE&EL + A(x,D)u(x,t) = £(u) xeQ, >0
B, (x,D)u(x,t) = 0 xe€9,t>0, (0 Kk m-1)
h| (6-20)

u(x,0) = uo(x)

where A(x,D), B, (x,D) are the partial differential operators defined by

3

A(x,D) = aa(x)Da

Zlalizm

By (x,D) = z|h|< (x)D (0<3j<m-1) (6-21)

such that the system (A(x,D),(B.},Q2) satisfies (5-9) and inequality (6-7),

h|
and the nonlinear funcéion, £, satisfies the condition:
f maps all of LZIQ) into LZ(Q), where f is continuous
from the strong topology of 12(q) to the weak topology of LZ(Q), and f
maps all bounded subsets of LZ(Q) into bounded sets. Also, there exists (6-22)

a constant k < B, k can be negative and B is the dissipativity constant

2
in (6~7), such that for every u,vel (Q)

(f(u)-—f(v),u—-v)o f_kllu—vllia



Let us now define the abstract operator A, which acts on the

real base Hilbert space H = Lz(ﬂ)v First, we define the operator To’
[~
= (6-23)
D(T ) = Cy(q)

(Tou)(x) = A(x,D)u(x) ueD(To).

Then, we define the abstract operator A,

D(A) = nﬁ“‘ @) (6-26)
(Au) (x) = A(x,D)u(x) ueD(A).

We see from lemma 6.2.4 that A is the smallest closed linear

2
extension of To in L(R). We obtain the following evolution equation

———(J—i: £ + Au(t) = £(u) (6-25)

u(0) = u UOED(A)
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where A is defined in (6-24), and f is the ponlinear function defined above

in (6~22). We must define what is meant by a solution to (6-20).

Definition 6.41.2. u(x,t) is a generalized solution of (6-20)

if u(t) is a solution of (6-25) in the sense of definition 6.41.1.
We are now ready to solve the nonlinear stability problem.

Theorem 6.41.2., Let us consider the strongly elliptic partial

differential operator, A(x,D), and the boundary operators fBj}?:é defined

in (6-21), such that the system (A(x,D),{B,},Q) satisfies conditions (5-9)

|
and inequality (6-7), and the nonlinear function, f, satisfies (6-22).
If we consider the nonlinear initial-boundary value problem (6-20), then

for any initial value function uo(x)eHﬁm(Q) there exists a unique general-

ized solution, u(x,t), such that
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(1) for every qzo,u(x,t)éﬂgm(n);

(i1) wu(x,t) is a generalized solution of (6-20);

(i41) wu(x,0) = uo(x), and u(x,t) satisfies the boundary
conditions in a generalized sense;

(iv) any equilibrium solution (if £(0) = 0, the null solution),
is asymptotically stable if k < B, is stable if k = B, with respect to
the L2 - norm, where k is the constant in (6-22) and B is the dissipativ-
ity constant in (6-7).

Proof. We define the abstract operator equation

j—;:‘i-t-)- + Au(t) = £(u)

u(0) = u uoeD(A)

where A is defined in (6-24) and is the smallest closed extension of the
operator To’ which is defined in (6-23). From lemma 6.2.6, we see that the
domain D(A) and range R(A) are both contained in the real Hilbert space

H = LZ(Q) such that D(A) is dense in LZ(Q) and R(I-(~A)) = LZ(Q). From
lemma 6.2.5, we have the following inequality: there exists a constant

B > 0, such that for any ueD(A)
(u, -8)u) < -8 ]ul[2.
* o— o

Now, since f satisfies (6-22) with H LZ(Q), we can apply theorem 6.41.1.

Since uoeD(A) is given, there exists a unique solution, u(t), of (6~25)
such that u(0) = u s and the equilibrium solution (if £(0) = 0, the null
golution) 1f it exists, is asymptotically stable if k < B, and is stable
if k = B, with respect to the L2 - norm. From definitions 6.41.1 and
6.41.2 we know that there exists a generalized solution, u(x,t), of (6-20)

such that for every t > 0, u(xst)eﬂim(ﬂ), which implies that u(x,t) satisfies



the boundary conditions i? a generalized sense. Since u(0) = u , we
see that u(x,0) = uo(x)eﬂgm(ﬂ). Finally, the equilibrium solution (if
£(0) = 0, the null solution), if it exists, is asymptotically stable if
k < B, and is stable if k = B, with respect to the L2 - norm.

Remark 6.41.1. From this theorem, we can see that even if

B = 0, and for every ueD(A)

(u9 ("A)u)o f_ os

we will have asymptotic stability of the solution to (6-20) if the comstant

in inequality (6-22), k < 0.

6.42. The Nonlinear Stability Problem for the Case n = 1

In this section, we consider the nonlinear stability problem
where the space variable xeQ = (a,b)CRl and -~»:< a < b < =, Consider the

following initial-boundary value problem,

.%2&5;21 + A(X,E“DU(X,C) = f(u) xe{a,b],t>0
t 3x
By GRu0x,0) | = By GPuGxt)| =0 £0,0ckm-1 (6-26)

u(x,0) = uo(x)

where A (x,%;), {B;}?;é and {B;}?;é are the linear partial differential
+

operators defined by (6-12), such that the system (A(x9%§), {Bj,B;})

satisfies (5-23) and inequality (6-16), and the nonlinear function, f,
satisfies (6-22).

Now, we define the abstract operator A:
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D(4) = Hém[a,b]
(Au) (x) = A(x,%;)u(X) ueD(A)

where Hﬁm(a,b] is defined in (6~13). We then obtain the evolution

eguation

du(t)

T + Au(t) = f(u)

u(0) = u (6-27)

where A is defined above, and D(A) and R(A) are both contained in the
real Hilbert space H = Lz[a,b]a We are now ready for the main result in

this section.

Theorem 6.42.1. Let us consider the nonlinear initial-boundary

i
differential operators defined in (6-12), such that the system (A(x,%;),

value problem (6-26), where A(x,%;), {B;} and {B,} are the linear partial
{B;,Bg})satisfies (5-23) and (6-16), while the nonlinear function satisfies
(6-22), Then, for any initial value function uo(x)eﬂém[a,b], there exists

a unique generalized solution, u(x,t), such that

(1) for every t > 0, u(x,t)eHgm[a,b];
(11) u(x,t) is a generalized solution of (6-26);
(1ii) u(x,0) = uo(x), and u(x,t) satisfies the boundary

conditions in the classical sense;

(iv) If £(0) = 0, the null solution is asymptotically stable
if k < B, 1s stable if k = B, with respect to the Lz—norm, where k is
the constant in (6-22) and 8 is the dissipativity constant in (6-7).

Proof. We have defined the evolution equation in (6-27), and

as we can see from lemmas 6.3.2 and 6.3.3, the abstract operator A
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satisfies the following conditions, D(A)CLz[a,b], and R(A)CLz[a,b], such
that D(A) is dense in Lz[a,b] and R(I-(~A)) = Lz[a,b]. Furthermore, -4
satisfies the inequality: there exists a constant B > 0, such that for

any ueD(A),
(u, (-A)u) < =8| ]u] ]2
o - (o]

Since f satisfies (6~22), we can now apply theorem 6.41.1 and see that
there exists a unique solution, u(t), of the evolution equation (6-27)
such that for every t > 0, u(t)eD(A) = Hgm[a,b], and u(0) = u. Also, the
equilibrium solution (if £(0) = 0, the null solutiomn), if it exists, is
asymptotically stable if k < B, and is stable if k = B, with respect to
the L2 - norm. Hence, from definition 6.41.2, we see that there exists

a generalized se@lution, u(x,t), of (6-26) such that for every t > 0,
u(x,t)eﬂgm[a,b], and u(x,0) = uo(x), and that u(x,t) satisfies the bound-
ary conditions in the classical sense. Finally, the equilibrium sé&lution
(1f £(0) = 0, the null solution), if it exists, 4s asymptotically stkble

if k < B, and is stable if k = B, with respect to the L2 - norm. qed

6.5. Applications to Partial Differential Equations

There is a large class of physical and engineering stability.
problems which fit into the theory developed in the previous sections. In
this section, we consider some applications of both linear and nonlinear
initial~boundary value problems which illustrates how the theory can be
used to solve specific stability problems. In part 6.51 we consider the
Dirichlet problem, and shww that the results of Buis in [7] is just a
special case of the rvesults in 6.2 and 6.3. In the second part, 6.52,
we will consider specific examples of stability problems which will show

us the large class of problems that f£it into the theory we developed.
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6.51. The Dirichlet Problem

In this section, we will show that the results of Buis [7],
in which he solved the stability problem for Dirichlet boundary conditions,
is a special case of the results in sections 6.2 and 6.3. In other words,
if we restrict the system of boundary operators {Bj}?;g to be the Dirichlet

boundary conditions, our result is the same as that for Buils. We will

first consider the case n > 2.

Let us consider the following initial-boundary value problem

3t ® ] xeq, tz_o

(%;)ju(x,t) = 0 xe3Q,t>0(0<j<m-1)
(6-28)

u(x,0) = uo(x)

where A(x,D) is a strongly elliptic formal partial differential operator
in 5} of order 2m, with infinitely differentiable coefficients, and @ is a
bounded domain in Rn, n > 2, such that 3Q is of class ¢’ and  is locally
on one side of 30, as defined in section 3.43.

We have the following result, which will show that for the
case n > 2, if the system of boundary operators are restricted to the
Dirichlet boundary conditions, the results of Buis are just a special
case of theorem 6.2.1.

Theorem 6.51:1. Let us consider the initial-boundary value

problem (6-28) where A(x,D) and Q satisfy the conditions given in (6~28).
C

If there exists a constant B = El - C2 > 0, where C1 and C2 are the
o

constants in Garding®’s inequality (see section 5.2), and Co is the constant
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from the continuous injection mapping from Hm(ﬂ) into LZ(Q), that is
Il”llo §_C°lle|lm, then for any uo(x)eﬂzm(ﬂ)nﬂi(a), there exists a unique
generalized solutien, u(x,t), of (6~28) such that,

(1) for every t > O, u(x,t)eﬂzm(Q»1H:(ﬂ);

(ii) wu(x,0) = uo(x), and u(x,t) satisfies the boundary conditions
in a generalized sense;

(iii) the null solution is asymptotically stable with respect
to the L2 - norm.

Proof. From the hypothesis, we know that A(x,D) is strongly
elliptic in 2 of order 2m, with infinitely differentiable coefficients, and
2 is a bounded domain in Rn, such that 30 1s of class C and  1is locally

on one side of 9. Let us define the system of boundary operators

B, (D) = G (< jem-1) .

From example 5.21.1, we see that {Bj}?;g is a normal system and satisfies
the strong complementary conditions with respect to A(x,D), where the m
boundary operators are of order mj = j < 2m-1, and are independent of time.
Also, the coefficients are comstant. Therefore, the system (A(x,D),
{C%;)j},ﬂ) satisfies condition (5-9). We must now show that inequality
(6-7) is satisfied. Since A(x,D) is strongly elliptic in &, it is well

known that it satisfies Garding's inequality for usHﬁ(Q)s Therefore, for

any ueCZ(Q)‘
(w,A(x,D)u)_ > €, ||u]|? - c,||u]|?
? ’ o— 1 m 2 o
C
1 2 2
2 g [Hel1? - cyllu]12

C 2
= (‘6]:“ C2> HuHO
[¢]
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2
- sl]ul12.

It can be seen that inequality (6~7) is satisfied, since there exists a

constant B > 0, such that for any ueC;(Q)
(u,~A(x,D)u) < —Bllullz.
* ? o— o

The results of theorem 6.21.1 now apply, if we note that Hgm(ﬂ) =
Hzm(ﬂ)nﬂg(ﬁ) (see remark 3.46.2). Therefore, since uo(x)eHzm(Q)ﬂﬂz(Q),
there exists a unique generalized solution u(x,t) of (6~28), such that
for any t 3_0,u(x,t)eH§m(Q) = Hzm(ﬂ)nﬂz(ﬂ), and u(x,0) = uo(x). Also,
u(x,t) satisfies the boundary conditions in a generalized sense, that is,

from the definition of Hgm(n)

< Q%E)ju > 0 (0<xm-1).

am-j-1 "~
2

Since B > 0, the null solution is asymptotically stable with respect to

the L2 - norm, qed

It remains to prove the theorem for the case n = 1. Let us

consider the following initlal-boundary wvalue problem,

——b—lgﬂ 280y A(x,%;)U(x,t) = 0 xe[a,b],t20, —» < a < b < ®
C%;)ju(bst) = C%;)ju(a,t) =0 for each fixed t>0 (0<j<m-1)

u(x,0) = uo(x) (6-29)

where A(x;%;) is a strongly elliptic linear differential operator on [a,b]
defined in (5-20) of order 2m, with infinitely differentiable coefficients.

We have the following result for the case n = 1.

Theorem 6.51.2, Let us consider the initial-boundary value

problem (6-29). If there exists a comstant B =_E; - C2 > 0, where COs
C

Clg and C, are defined gs in theorem 6.51.1, then®for any

2
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uo(x)eﬂzm[a,b]nﬂﬁ[a,b], there exists a unique generalized solutiom, u(x,t)

of (6-29) such that

(1) for every t 2 0, u(x,t)eH "[a,bInH"[a,b];

(1i) wu(x,0) = uo(x), and u(x,t) satisfies the boundary
conditions in the classical sense;

(1ii) the null solution is asymptotically stable with
respect to the L2 - norm.

Proof. From the hypothesis, A(x;%;) is strongly elliptic in
[a,b] with infinitely differentiable coefficients. Let us define the

boundary operators, for each fixed t > O,
B o u )|, = G uwm,t) (0 & m-1)
CTiex ?E0 U x=b ox ? =

- 9
5 Syuev)l, = G uca,b).

We can readily see that B;(%;),B;(%E) are all linear differential operators

+ -
with constant coefficients of orders m, = m, = j<2m-1, and are independent

h| k|
of time. Also, the systems {B;}{Bg} are linearly independent. This shows
that the system (A(x,%;p, {§+,Bg}) satisfies (5-23). As was proved in
theorem 6.51.1, from the definition of Him[a,b] (see (6~13)), there exists

a constant B > 0, such that for any ueﬂgm[a,b]
9 2
(us"A(xp'é';E)u)o < “"Bl Iul !0.

The results of theorem 6.3.1, now apply, if we note the definition of
ﬁim[agb] = Hzm[a,b]ﬂﬂg[a,blg Hence, there exists a unique generalized
solution, u(x,t), of (6~29) such that for any t 3_0,u(x,t)eH§m[a,b] =
Hzm[a,b]nﬂg[a,b], and u(x,0) = uo(x)o Also ,u(x,t) satisfies the boundary

conditiocns in the classical sense. Finally, since B > 0, the nuill
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solution is asymptotocally stable with respects to the BZ - norm.
Combining theorems 6.51.1 and 6.51.2, we can see that the
Dirichlet problem is a special case of the theory developed in sectioms

6.2 and 6.3.

6.52. Specific Examples

We will now give some specific examples which show that many
physical problems can fit into the theory we developed.

Example 6.52,1. Let us consider the following diffusion

equation with the boundary condition that the heat leaves normal to the
surface at a rate proportional to the amount of heat at the surface,

and there is no heat source.

e (-g—}-{;)zu(x,t) + bu(x,t) = 0 xef, £20
o (Dux,t) + Gulx,t) = 0 €30, 120
© n " (6-30)

u(x,0) = uo(x)

where 2cR™, n>2, b>0, min o (x) = k, > 0.

>
x€ 98 1

2
Let us define the operators A(D), Bo(x,D) and the spaces C;(Q), HB(Q)z

3 .2

A(D) = - Ll G+
1

B (x,D) = 0 (x) + >

o'"? o an

where the order of A(D) is 2m=2. @ is a bounded domain such that 392 ig of

0
class C ;, Q 1ocally on one side of 3Q.



) B 0o ~— du -
Cp (@) = {ueC (n)loo(x)u + 3= =0 on 30}

Hﬁ(ﬂ) = completion of C;(Q) with respect to the H27 = nOYm

= {ueHz(Q)I<B°u?£

2

=0},

It will be shown that:cproblem (6~30) satisfies the conditions of theorem

6.2.1, which implies that for any uo(x)eﬂg(ﬂ), there exists a unique

generalized solutions u(x,t), to (6-30), such that for every t >0,

u(x,t)eHg(ﬂ) with u(x,0) = uo(x) and u(x,t) satisfies the boundary
conditions in the generalized sense. Also, the null solution is
asymptotically stable with respect to the L2 - NOTMm,

(a) From the hypothesis,  is a bounded domain in RP, n>2,
such that aﬂsdw,ﬂ locally on one side of 3Q.

(b) A(D) is strongly elliptic in Q, with infinitely
differentiable coefficients. This is seen by letting & =(El,..¢,€n) #

OsRn, we have
m n 2 n .2
LA ) = DI-Fy, E71 =1 450> 0.

Since the coefficients are constant, aaecwfﬁ)e

(¢) By definition Bo is independent of time, with constant
coefficients.

(d) {BO} is a normal system. This is obvious, since Bo is
of the form (5-8) and satisfies definition 5.21.3. Also, the order of
B is m = 1< 2p-1=1.

(e) Bo satisfies the strong complementary comditfen.

Since we have shown in example 5.22.2 that the Laplacian is invariant

under the transformation ei, we can use theorem 5.22.2 to verify the
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gtrong complementary condition, that is, it suffices to verify the condition
for one point xoeag, Let us pick the point Xoeaﬂ, such that the normal
vector at Xo is £'= (0,...,0,1), and the Zangent hyperplane at Xo is
parallel to the plane x, = 0, 80 we can let the vector in the tangent
hyperplane be £ E(EI,,.Q,En_l,O) # 0. Let A > 0.

First, we will find the roots with positive imaginary part of

the polynomial

(wl)on(E + TE') + AL

1f we define
2 n-1 _2
n = Zi“l gi’ then
m
DA E + T + A= (1A (EpheensE 5T+ )
n~-1 _2 2
= - [ “Zisl Ei - T ] -+ A

= 12 + nz + A,

The m=l root with positive imaginary part is

%* = v Z
T (ns)‘) + i n + A -

Hence; we obtain the polynomial

M*(n,A) = t=t%(Q,A) = T~1/ n2 + 2

Next, we must show Bo is linearly independent moduloc M* (n,A).

Since 5
Bo(xyD) mléggg) at X.Os.m9 we have

Baﬁcg + ng) bt Boo(glg9@eggn_lff> LT
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and on dividing Boo(g + t&') by M*, we obtain the remainder

n-1

Since n # 0eR and A # 0, we obtain

det (iV ) iV # 0.

This shows Boo is linearly independent modulo M*, which implies that Bo
satisfies the strong complementary condition,

Therefore, the system (A(D),Bo(x,D),Q) satisfies (5-9), and it
remains to verify inequality (6-7). For any uacz(ﬂ), we have the follawing

inequality using integration by parts and the boundary conditions

(u,-a@u) = [oII7 o é— ) 2u(x) Ju(x)dx - fo bu? (x) dx

f Zimlc_ESEl) dx + f u(x)%%szl d(aﬂ)—fgbuz(x)dx

fgzinle"glﬁl) dx ~ janao(x)uz(x)d(aﬂ)~fgbu2(x)dx

ax

< - min (Lo () [f 1" (~‘i§5-> ax + [, u? (0)dan)]

xefd 1=1°3

from a well known inequality by Friedrich, we have for some C0 >0
< -min(l,k.)C f uz(x)dx
- 1770’ ’

2
- -8{]ul|2.

where B = C0 min (19k1) > 0. This verifies inequality (6-7), whexre 8 > 0.
Therefore, the hypothesis of theorem 6.2.1 1s verified and from the results

of the theorem, theve exists a unique generalized solution of (6~30) such
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that u(x,0) = uo(x)sﬂg (@), u(x,t) satisfies the boundary conditions in a
generalized sense and since 8 > 0, the null solution is asymptotically

stable with respect to the L2 - NOYm.

Example 6.,52.2. We will consider the diffusion equation for the

case n = 1, with the boundary condition that heat emanates fwom the ends of

a rod at a rate proportional to the amount of heat at the rods ends,

g:sxztz - (—g_x)zu(x9t) + bu(x,t) = 0 XE[Os]-], t>0

2u , su
ax(l’t) + Bu(l,t) = ax(O,t) - au{0,t) = 0 for each fixed(gzgl)

u(x,0) = uo(x)

where b > 0, o > 0, B > 0 and «,8 # 0 simultaneously.
9 + .9 -9
Let us define the operators ACE;), Bo(g;), B065§) and the function space
2
H[0,1],
) 9 .2
A(ax =" (3x) +b

B:(%;)u(l,t) = %ﬁ(l,t) + Bu(l,t) for each fixed t>0

B E)0u(0,t) = §x(0,8) - au(0,0)
where the order of A(%;) is 2,
Ho[0,1] = {ueB®[0,1]]u’ (1) + B(1) = 0,u’ (0) - au(0) = O}.

We will show that problem (6~31) satisfies the hypothesis of theorem 6.3.1,
which implies that for any uo(x)eﬂi[o,lj, there exists a unique generalized
solution, u(x,t), of (6-31), with u(x,0) = uo(x), such that u(x,t) satisfies

the boundary conditions and the null solution is asymptotically stable with
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respect to the L2 ~ NOYM.

a) As in example 6.52.1, we can see A(%Fx-) is str'ongly elliptic
in [0,1].

b) B: is linearly independent, since there is one term of order
m = 1< 2m1=1. Similarly, B; is linearly independent. This shows
that the system (A(%;),B:(%;),B;(%;)) satisfies (5-23), and it remains to
verify inequality (6-16). In order to do this, we need the following lemma.

Lemma 6.52.1. If o > 0,8 > 0 and a,B # 0 simultaneously, we

have the following inequality

fi(%‘ljzdx + Buz(l) + auz(O) > Gofiuz(x)dx, for some C_ > 0.

Proof. Let ueLz[O,l]. We see that

lux)|? = | ¥ur @)ae + u(0)]?

5_2|f§u'(€)d£|2 + 2|u(0)|2

IA

2f§daf§|u‘(€)lzd£ + 2]u(0)]?

2'1fi|u'(£)$2da + 2|u(0)|2.

IA

For the sake of argument, we can asgume o # 0. Therefore,

filu(x)]zdxf_ 2 fi]u' (x)lzdx-i- 2|u(0)|2
= 2 j‘]:,‘luw (x)lzdx-l— (-g)alu(O)lz

1

< .Cl[filu’ (x)lzdx + Buz(l) + uuz(O)]e qed



Now we can prove inequality (6-16). For any usH [0,1], from integration

by parts, the boundary conditions and from lemma 6.52.1 we have

(w-aGDw = [11ED%m - bu) Tu) dx
- I @ lu@ax - bf vl () dx
—fi(%ﬁi‘l)zdx +u@ue @} - bfle @ax
= /1@ 240 + w(u' (D) - w(@)u' (0) - bf P (ax
= [5G0y 245 - g (D) - av?(0) = bf ¥ ) dx

—[fi(%ﬁizl)zdx + Buz(l) + au2(0)]

| A

fl 2ﬂx)dx

|I\

2
= =8| |ul]

where B = Co > 0. This proves inequality (6-16). Since we have verified

the hypothesis of theorem 6.3.1, we can utilize those results. Hence,

there exists a unique generalized solution, u(x,t), of (6-31) with u(x,0) =

uo(x), satisfying the boundary conditions in the classical sense. Also,
since B = Co > 0, the null solution is asymptotically stable with respect
to the L2 -~ [OIM.

Example 6.52.3. Let us consider the stability problem in

example 6.52.1 with a heat source, or 2 nonlinear function on the right

hand side. Consider the initial-boundary value problem

Ju(xz, t (L)zu(x,t) + bu(x,t) = f(u) xeQ, >0
i=1"0x, -

13¢
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co(x)u(xgt) + %ﬁiﬂlzl = ( xedQ, >0 (6-32)

u{x,0) = uo(x)

2

£(u) = k—s 24> 0
2 . 2
A+ u

where the operators A(D),Bo(x,D) are defined as in. example 6.52.1, b > 0O

and min Go(x) =k, > 0. 1 assert, if }%111 Co min (l,kl), where C0 is the

1
consiziz in Friedrich's inequality in example 6.52.1, then there exists a
unique generalized solution of (6-32) satisfying the boundary condition
and initial condition, such that if |%1 < Co min (l,kl) then the null
solution 1s asymptotically stable, and if l%] = Co min (l’kl) the null
solution is stable with respect to the L2 -~ norm. From example 6.52.1, we
know that the system (A(D),Bo(x,D),Q) satisfies (5-9) and inequality
(6-7) with B = Co min (l,kl), and in order to use the results of theorem
6.41.2, 1t must be shown that the function f satisfies (6-22). We can

see readily that £ maps all of L2(Q) into Lz(ﬂ) and maps bounded sets into

bounded sets. It suffices to verify the following inequality

| |£Cu) - f(v)l]o g_f%l Ilu—vllo for every u,vst(Q) (6-33)

which shows that f is continuous on the strong topology of LZ(Q) to the weak

topology and

(EW) - £0),uw) < [[E@ = @] [lu=v]] < 5] [Juv]|2

which is our desired result. To see (6-33), we have

e - @] [2 = [ le@ - £(w)]%ax = | |ku2 i
o ‘@ D22 A%+
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2 )\zuz + u2v2 - szz - u2v2 2
= &, 57 - | dx
A"+ u)YT + v)
2 2 2
2 4 u - v
= k°|A ] — | dx
e Do+ v
2 4 u++v 12 2
= 124 | 12| u-v| 2ax
202+ ud? +vH
SREINT lu(x) + v(x) |2 [ Jumv%a
< max 5 Jglu~v] dx

xe@ 02 + 2x)y? + v2 ()

kzlAI‘*(-l-i—l—yz | [u-v] |2

2
k 2
K el 17

]

This follows, since it can be easily shown that for any u,v real numbers

lu + v < 1 .
02+ &2+ )3

Hence, we have verified inequality (6-33) which shows that f satisfies
(6-22). Since problem (6-32) satisfies the hypothesis of theorem 6.41.2,
we can apply these results and see that there exists a unique generalized
solution u(x,t) of (6-32) with u(x,0) = uo(x), such that u(x,t) satisfies
the boundary conditions in the generalized sense, and since £(0) = 0, the
null solution is asymptotically stable with respect te. the L2 - norm if

. .
X] < Co min (l,kl), and is stable if I%] - Co nin (l’kl)'

Example 6.52.4. Let us consider a more involved problem, the

generalized Laplacian, found in Lions~Magenes [18]

éﬂ!§3£l-+ Azu(x t) = £(u) xef,t>0
ot : * =

5 (6-34)
Au(x,t) = 0, Fv (Au) (x,£) = 0 xedQ,t>0

u(x,0) = uo(x)
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where A(D),BO(D)gB (D), £ and @ are defined below:

3 2.4

A@) = 0% = I} 4 G G5
J

where the order of A(D) 1s 4, and m = 2;
B (D) = A, B,(D) = 3= ()
0 e § an

n

where A = 1=1

62-—)2 = Laplacian;
ax
i
2 2
f(u) is a nonlinear function, mapping all of L"(Q) into L (Q),
and is continuous from the strong topology on LZ(Q) to the weak topology,
mapping bounded sets into bounded sets with £(0) = 0, and there exists

a constant k < 0, such that for any u,veLz(Q)
2
(E(w) - £(V),u-v) < k| IU-VHO;

2 is a bounded domain in R, n > 2, such that 3Q 1s of class €,

Q locally on one side of 3Q. We define the function spaces, C;(Q) and
4

Co@) = {uec” @ |bu = gen(Au) = 0 on 30}

Hg(ﬂ) = completion of C;(ﬂ) with respect to the H4 - porm

=< B.u >

4
= (weH @] < Bu>,, 1% %172

= 0}.

I assert that for any uo(x)ng(Q), there exists a unique generalized
solution, u(x,t), of (6-34) satisfying the boundary conditfons and initial
condition, such that if k < 0, the null solution is asymptotically stable

(1f k = 0, the null selution is stable) with respect to the L2 -~ nporm.
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To prove this assertion, we will show that problem (6-34)

verifies the hypothesis of theorem 6.41.2.

(a) The smoothness property on 2 is true from the above

hypothesis.

(b) A(D) is strongly elliptic in Q. Indeed, for every & # 0er™
1" _(&) = 22 = E(Z“£)+ + 20 eh
ijl i°4 =1 1=1"3
n
= QyaF) 2)?

(c) {BO(D),Bl(D)} is a normal system. Indeed, the orders
m, = 2,m1 = 3 are distinct. Now, after the transformation ei (see section

5.22) we obtain the transformed boundary operators

n-1 3 2 n-1 23 2
BO(D) (—-—_.) + zi_l axl ) ( n) + i=1(axri)
(6-35)
B o) = & )[( = ) + 108 ) 1= &% ¢ gx. )21¢-)

which are in the equivalent form (5-8) and satisfies definition 5.21.3.
(d) {BO(D),Bl(D)} satisfies the strong complementary conditionsi
Indeed, from (6-35) and since A(D) is invariant under ei (see example
5.22.1), we have that the system {A(D),BO(D),Bl(D)} is invariant under Bie
Therefore, we can apply theorem 5.22.2 where it suffices to verify the
strong complementary condition for just one point on 3R. Let us consider
the point Xed such that the tangent hyperplane to 32 at X 1s parallel to
the plane xn = 0, and the normal vector to 9Q at X is parallel to the
x - axis. Let £' = (0,...,1) be the normal vector to 90 at X and

£ = (algeee,innl,O) be in the tangent hyperplane to 30 at X. Let )\ > O.

First, we must find the m = 2 roots with positive imaginary
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part of the polynomial
(-l)on(E + TE') + A,

Letting nz = Z]::I;lgi’ we have

il

m
("1) AO(E + TE') + A AO(El’...,En"l’T) + A

2 2 2,2
(£1+.,,+E;n_1+'r) + 2

(n2 + 1'2)2 + A

14 + 2n212 + (n4 + ).

It can be easily seen that

2+ /74 %
2 o =20 s gn —4M+A) 2%,

and 1if we let g = -nz + 1/%, we have

1/2

CDPA G+ €D + 4 = (2 - alc? - ) = G - oYy + ot

1/2 1/2

(t-a dr+a )
where by a direct calculation we obtain

/o = @2 ,.ig_ [(/ﬁz-:fg-”nz)l/z + 1(J;Z“;f;'+n2)1/2]

~1/2 1 2,1/2 2,1/2
feem (@) - = NN e R TSN I B

Therefore, the roots are

T;(n,k) = V/a, r:(n,k) = /f—
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and we obtain the following polynomial

M (n,0) = (1)) (-1p) = @) (D) = 1 - (el

Q

Next, we must prove the polynomials BOO(E + t£') and Blo € + tE")

%
are linearly independent modulo M (n,A). To show this, we see that
B (E+ TE') = B (EqseeesE 131)= T2 + 2
00 oo 1° **n-1°

*
and upon division by M (n,\) we get the remainder

r, = (n2 - /;/i) + (Vo + /—;—)1.

Similarly, for Blo we see that

B, (€ + TE') = By (B ,ennnf _57) = 1(x° 4 00) = ©© + 0’

*
and upon division by M (n,A) we get the remainder

r, = A & F 5+ [0a+ )P+ n? VaEl

Hence, since n # 0 and A > 0

2 - JaS) a + /)
det o @
~Va=(/a + £) Vo + 22+ (n? - Ve

»N

2
= (- VAR [(a + )2 4 0 /@] + Jaata + )

¢

R

2

= n?(/a + 52+ (v - /56)2

[=]

ﬂnz(a 4+ o + 2/67/5)+n4=— 2n2/§f-:+aa

nz(a+§)+n4+a.&_
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= nl' + nz(—2n2) + (n4 + A)

= n4 - 2n4 + n4 + A

= A
# 0.

This shows that Boo(g + 18"), Blo(g + 7£') ave linearly independent
modulo M*(n,l). Therefore, the system {BO(D),Bl(D)} satisfies the
strong complementary condition.

We must now verify inequality (6-7). Letting uecz(ﬂ), we have

from Green's formula found in Mikhlin [21], and the boundary conditions

(u,-AM) | = foux) -a%u(x))dx
= -fnu(x)Azu(x)dx
= [ lau) 1 %dx ~f, (8 =(u(x) -au@)3EE 4 a0)

= -f l8u(x)1%ax

Hence, we ha¥e werified inequality (6-7).

If £ = 0, since the system (A(D),BOCD),Bl(D),Q) satisfies the
hypothesis of theorem 6.2.1, we have that for any initial function
uo(x)eﬂg(ﬂ), there exists a unique generalized solution, u(x,t), of (6~34),
such that for any t > O, u(x,t)eHg(Q) and u(x,t) satisfies the boundary
conditions in a generalized sense, and u{x,0) = uo(x)e Also, since B = 0,

the null solution is stable with respect to the L2 = TOTM.



If £ # 0, then f satisfies (6-22) and we have from theorem
6.41.2 the same result as above whereby, if k< 0, the null sslution is
asymptotically stable (and if k = 0, the null solution is stable) with
respect to the L2 - norm. An example of such a nonlinear function is

the one in example 6.52.3,

2

2
flu) = k = A° > 0,ki< 0.

GG 5

Az + u2
These examples illustrate how the theery developed in sections

6.1 to 6.4 can be used to solve a large class of stability problems with

very general boundary conditions, where these problems are of the form

(6-1) and (6-2).
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7.0. STABILITY OF SOLUTIONS TO THE

GENERAL BOUNDARY VALUE PROBLEM:

2
9 _u(x,t) + a du(x,t) + A(x,D)u = £ (u)
atZ ot

In the previous chapter we solved the stability problem for the

initial-boundary value problem

%%£5L51-+ A, Dulx,t) = £(u) xeQ, t>0
Bj(x,D)u(x,t) = 0 xedQ,t>0 (0<j<m-1)

u(x,0) = u_(x) ux,0) = v (x)
[ ot o}

which includes as an example the heat equation, or diffusion equation. But
there is a large class of physical problems which does not fit into the above
theory, an example being the wave equation. In this chapter, we will
consider the following elliptic partial differential equation.

2
3 u(x,t) + a g‘:(xst) + A(x,D)u(x,t) = f(u) XEQ,tz_O (7-1)
at

where a is a constant > 0 with the general houndary conditions

Bj(x,D)u(x,t) =0 xe3Q,t>0 (0¢iem-1)
and initial condition

u(x,0) = uo(x)s

where u(x,t) is a vector valued function, such that for every t > O,



u(x,t) is in some prescribed Hilbert space, and f is a nonlinear function
defined on the Hilbert space.
We solve (7-1) by reducing the problem to a system of equationms,

as in the linear differential equations case, of the form

du +Au=f(u) (7-2)

where A is a 2 x 2 matrix with operator elements, and u and f(u) are

2 - dimensional vectors whose slements are functions in a prescribed
Hilbert space. By choosing the correct base Hilbert space we can consider
the equation (7-2) as an abstract operator equation of the form

du(t)

2O 4+ aue) = £@

where A is an abstract operator defined on some base Hilbert space, in
this case H = H;(Q) x LZ(Q),'E is an element of H, and £(u) is a nonlinear
function defined on H into H, and again using the results of Pao [23], we
obtain sufficient cenditions to ensure the existence, uniqueness and
stability of a solution to (7-1). We will consider the linear case,

f(u) = 0, and gdso the nonlinear case, for QerR™ with n > 1. The results
of Pao [24] for a Dirichlet problem are shown to be a special case of the
results in this chapter. Examples will be considered to see how this

theory can be applied to solving specific stability problems.

7.1. Stability of the Solution of a Linear

Initial~Boundary Value Problem

In thie section, we will give sufficient conditions to guarantee
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the existence, uniqueness and stability of the null solution to the initial-
boundary value problem (7-1).
Let us consider the following initial-boundary value problem,

azu(x,t) +a dulx,t)
3t2 ot

+ A(x,D)u(x,t) = 0 xeQ,t>0

Bj(x,D)u(x,t) = 0 xedQ,t>0 (0<j<m-1) (7-3)

uGx,0) = u (), S8 -y ()

where a 1s a constant > 0,

A(x,D) is a linear foxmal partial differential operator with infinitely

differentiable coefficients in 5} written in the divergence form

) m - J[ﬂlp 9 ¢
A(x,D) () ZIOI,IGIiP -10''p (apo(x)D (+))
and the boundary operators, {Bj}?:é’ are written in the form

h
Bj (x,D) = Zlhk__mj bjh(x)D (< K m-1)

such that the system (A(x,D),{B.}, 92) satisfies:

h|
(i) 9 1s a bounded domain in Rn, n > 1, such that the boundary,

o is of class Cw,ﬂ locally on one side of 3.

(11) A(x,D) is stromgly elliptic in R, with infinitely

differentiable coefficients, a in Q.

po’
(1ii) {Bj}?;g is a normal system, satisfying the strong (7-4)

complementary condition, and is independent of time (if n = 1, {Bi}?:g

- m=1

B,}" ~ 1g a linearl

3'3=0 v

independent set). Also, the coefficients, bjh’ are infinitely differ~

is a linearly independent set, and similarly {
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entiable on 3Q.
(iv) A(x,D) is formally self-adjoint, that is for any uﬁveéz(ﬂ)
(u,A(st)v)o = (A(x,D)u,v)o.
(v) For any u,vecg(ﬂ),

faljo] lo|<n (“1)Ip‘“(X)Dp(apo(x)D°V(x>)dx

- fﬂzlplsIGlﬁmapo(x)Dpu(x)Dov(x)dx°

(vi) There exists a constant k>0, such that for any ucCZ(Q)

(u,A(x,D)u)o 3_k||u||i.

Let us define the vectors
u u v
— , —
u2 at V2

where u,vel = uz(n) X LZ(Q), where the inner product on H is given by
(u,v), = (ul,vl)m + (“Z’Vz)o

inducing the norm
2 2 2
Hal12 = 112+ 1luyl 12

which makes H a real Hilbert space.

We now define the operator To’

D(T ) = c;(n)
© (7-5)
(Tou)(x) = A(x,D)u(x) ueD(To)°

Let T denote the closure of To in LZ(Q), and from lemma 6.2.4 T is defined

as follows:

D(T) = Hgm(ﬂ)
(7-6)
(Tu) (x) = A(x,D)u(x) ueD(T).

We will show that the abstract operator T satisfies the conditions that
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D(T) and R(T) are both contained in LZ(Q), such that D(T) is dense in LZ(Q),
and for any a > O, R(al -~ (~T)) = LZ(Q)Q Also, =T is strictly dissipative

with respect to the L2 - inner product.

Lemma 7.1.1. Let To be defined in (7-5). Then for any u,veD(To)
(v,Tou)o = (u,Tov)o.

Also, -T is strictly dissipative with respect to the L2 - inner product,

that is, there exists a constant kl > 0, such that for any ueD(T)
(w, D < k| [u] |
’ o— 1 o

Proof. From condition (7-4(iv)) and the definition of To’ we have

for any u,veD(To)
(V,Tou)o = (u,Tov)o.

Since the identity injection from Hm(Q) into‘Lz(Q) is continuous, and since

(7-4(vi)) holds, we have for any ueD(To)
2 2 2
(1) < -kl ul |2 < ke |[ul|? = -, |u]|2.

Let ueD(T). Since T is the smallest closed extension of To in Lz(ﬂ), we

know there exists a sequence uneD(To), such that

~ u, Toun E* Tu as n > o,
L7 (®) L™(Q)

Therefore, from the continuity of the L2 -~ inner product

{u, ("T)u)o = Ill‘%g (un’(mTo)un)o

IA

2
o g el

2
—kl |lul|°¢ qed
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Lemma 7.1.2. T is a linear operator such that D(T)CLZ(Q),

R(T)CLZ(Q) and D(T) is dense in LZ(SZ)o Also, for any a > O,
2
R(aI -~ (-T)) = L°(Q).

Proof. From the definition of T and from lemma 6.2.6 we have that
D(T)CLZ(Q), R(T)CLZ(Q) and D(T) = Hgm(ﬂ) is dense in LZ(Q). Utilizing
lemmas 6.1.3 and 6.1.4 and the fact that (-T) is dissipative, we have for

any a > 0
2
R(aI - (-T)) = L°(Q).

(If n = 1, the same result holds, using lemmas 6.3.1 and 6.3.3.) qged

We now define the abstract operator A;

D(A) = HZB“‘(Q) x ) @) = D(T) x Hy(@)

u -u
0 -I 1 \

Au = = ueD(A) (7-7)
T al u2 Tu1 + au,

where a is the constant in (7~3), and the real base Hilbert space
H = H';(sz) x L2 @) (7-8)

obtaining the abstract operator equation

_g.-‘é(_t_)_ +Au(e) =0
t (7-9)
ufo) = u _goeD(A)a

It must be shown that the operator, A, satisfies the conditions of lemma
6.1.2. We first show that the domain and range of A are both contained in
H, such that D(A) is dense in H and R(I - (~A)) = H.

Lemma 7.1.3. Let A be the abstract operator defined in (7-7),
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then D(A)cH, R{A)cH such that D(A) is dense in H and R(I -~ (~A)) = H,
Proof. D(A) = Hg"‘(sz) x Hg(Q)CH?;(Q) x L2@) = H, since Hém(Q)CH:(Q)
and HE(Q)CLZ(Q)° Also, from the definition of A, it is readily seen that,

for any ueD(A)

Agzﬂg(ﬂ) X Lz(ﬂ) = H.

It follows that R(A)CH.
D(A) is dense in H. Indeed, since C;(Q)Cﬁgm(ﬂ)d-f;(ﬂ) and c; @) is
i 2m e
dense in B(Q), we have that HB () 1is dense in B(Q). Similarly, since
CZ(Q)CH%(Q):LZ(Q), and C:(Q) is dense in LZ(Q), we have that H:(Q) is dense

in LZ(Q). Therefore, D(A) = Hgm(Q) X Hg(ﬂ) is dense in Hg(ﬂ) % LZ(Q) H.

i

Finally, R(I - (-A)) = R(I + A) = H.

W
w = Wl eH
- 2

We must prove that there exists a ueD(A), such that (I - (-A))u = (I+A)u = w,

Indeed, let

H“I;(sz) x .2(0).

which is equivalent to showing there exists uleD(T) and uzeﬁg(ﬂ), such that

u w
1 I 1 ™
(T+A)u = T (1+a)l u, Wy *

Hence, it suffices to show there exists u,eD(T) and uzeHg(Q) such that

1

(i) U - Uy =W

2 T Wy

(i4) Tul 4 (1+a)u2 =W,

Substitute u, = U -oWy into (ii), which implies

Tu1 + (1~+a)u1 = (1+a.)w1 + w

or, written in another form

2



[(1+a)I—(-='I')]ul = (l+a)w1+wze

By lemma 7.1.2, since (I+a) > 0, we have R[(I+a)I-(~-T)] = LZ(Q) which

implies, since (1+a)wl+w eLZ(Q), that there exists uleD(T) = Hgm(ﬂ)

2
satisfying

[(l+a)1-(—T)]ul = (1+a)wl+w2.

- m
Let us define u2 = u1 WleHB(Q), and we can see

(1) u;mu, = u, - (u1~wl =Wy
(ii) Tul + (1+a)u2 o= Tul+ (1+a)(ul--w1

= [(l+a)1—(vT)]ul - (l+a)w1

= WZ.

Therefore, we have shown R(I-(~A)) = H, and have completed the proof of
this lemma.. ged
We introduce an equivalent inner product on H and show that the
operator, —A, is dissipative (or strictly dissipative) with respect to
this equivalent Iinner product.
Let us define the operator S:
D(s) = D(T) x L°(@)

21 + a1t a1l | %M

S(u) = ueD(S). (7-10)
al 21 u,
where we can see D(S) is dense in H.

Let us define a functional V(u,v) on D(S) as follows: for any u,veD(S)
V(v = (u,8v) .

We will show that this is a continucus bilinear functional on D(S), in the
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topology of H, which defines an equivalent inner product on D(S) and we will

extend this to an equivalent inner product, V{u,v), on all of H. Then we

will show, -A, is dissipative with respect to this equivalent inner product

on H.

Lemma 7.1.4. The functional V(u,v) defined above is a continuous

bilinear functional on D(S) in the topology of H.

Proof. It is clear the V(u,v) is bilinear. Let

u Vl
u = , v = eD(S).

2 V)

By definition, we see that

; 2
V(u,v) = [ul,uZ], 2Tovl+a v1+av2 (7-11)

av, + 2v2

1 0

2
= 20, Tovy)gta  (ug,vy) ralugavy),
+ a(uz,vl)o+2(u2,v2)o.
We must first show that there exists a constant k > 0, independent of
ul,vl, such that
[CupsTovd ol < el fug [ vy H

Indeed, utilizing condition (7-4(v)), the inequalities

Zi’aibil 2 [Zilailzlllz[zilbilzlllz

[of @emadx <ff £ yax1 2 ([ g% (rrax1M/?

and letting M = max a G(x)g we have the following inequality
xef)
Iplalolfp
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,p, P (o]
‘ <ul’Ton)o| = ”92'9' , lq|<m(—l)ul(X)D (apc(x)D vl(x))dxl
= UaLlo], o] enq 0 ey 0%y G|
<Mfaljo) o)< (OP°v, O]

<MoLio1, o] <m! PPug GOD7vy () ax

f—Mis‘z[z'p|§_mleu1(x)|2]1/2[2|0l<mln v (x)l ]1/2

<ML |nfq P70 @] dx]llzlz |o}<alo 0%, Gy | Pax1 /2

= Ml lull Im Hvll lm’

2.2

Therefore, since ||e||o §_C°||~||m, and by letting ko = max[2M+a Co,aCo,Zl,

we have the followimg inequality:

V| < 2] Ga,T vy 1] tupavy) l4al upvy) |

+ a| (uyav) 142 Cuyv) |
2.2
<at|Jug |y [leg L+ a%cg oy H Ty Hp +ac Hug v, I,

rac_[[u,l 111wy 1, + 2l [u) ] 119,11

<t ugl ] lvil L+ N1yl + a1,
IR

w i (gl |+ Huy [ log L+ vyl
Squaring both sides and using the well known inequality

(a+8)2 §_2(a2+82) for a,B any real numbers



158
we have
v ]? < w1+ el 021 1, + 1v,l] )2
< a2 ug 112+ Ho 1D Alvg 112+ (v, 112).
Therefore, we have
V] < 2 Ulug 112+ e, Y21 12 + Hed1HY?
= 2 |lullyllullg (7-12)

or V(u,v) is continuous in the topology of H. qed

Lemma 7.1.5. The bilinear functional V(u,v) defines an equivalent

inner product on D(S) in H, and the extension,'V(ggg), of V(u,v) to H
defines an equivalent inner product on the whole space H.

Proof. Let

eD(T,) 12() = D(S)

and define
@) = V(u,¥) = (u,89) .

1t is first shown that this defines an inner product on D(S8). Since V
is bilinear, we have linearity in the first term of (gax)s,. From lemma

7.1.1, and (7-11) we have

@), = V@
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= 2 (u,,T v.) + az(u v,) <+ a {u,,v,)
1’01’0 1’1’0 1°"20
+ a(uz,,vl)Q + 2(u2,v2)o

2
2(vl,T°ul)o + a (vl,ul)o + a(VZ’ul)o

+ a(vl,uz)o + 2(v2,u2)o

V(v,u)
= (_Y_s_‘i)s
which shows that (Ea!)s is symmetric.

From condition (7-4(vi)), we have the following inequality

by letting k, = min (2k,l) where k is the constant in condition (7-4(vi))

2
2
(E*EQS = 2(ul,Toul)o + a (ul,ul)o + a(ul,uz)o + a(uz,ul)o + 2(u2,u2)o

2k|]ullli + fﬂ[azui(x)+2aul(x)uz(x)+2u§(x)]dx

jv

2k||ull|i + fQ[(aul(x)+u2(x))2+u§(x)]dx

2 2
2kl|u1||m + fguz(x)dx

v

k0| Ju |12 + []u,]]2]

jv

2
« 1| ul [2.

Hence, we have shown that there exists a constant kz > 0, such that for

any ueD(S)
2 2
Hallg 2 %, [ a5 (7-13)

From the inequality, we have that (gig)s > 0 and (5*2)3 = 0 if and only
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if u = 0. Therefore, (g,_y_)s 1s an inner product on D(S8). Also, from
(7-12) and (7-13) we can see that the inner product (g,g)s is equivalent
to the one defined on H, that 1is, there exists constants ko’kz > 0, such

that for any ueD(S)
A Nelly < Hall, < 72 al | (7-14)
This inner product is extended to all of H by the following definition

@y, = V(¥ = lg YV ,v ) = Lo (u,v ) ,u,veH

——-—n —

where u »V  are sequences in D(S) such that

u -+ u, v

n T Y as n + =,
— H — H

(.,.) defines an inner product on H., Indeed, from the
e

definition of (_q,}_l_)e and the bilinearity of (un,v )s’ (E,y_)e is linear in

the first term. Also, since
(}isl’_)e = n_}g} (iszg-)s = %ig (lel-&)s = (Xs_‘-}_)e
then (_tg_,_g)e is symmetric. From (7~14) we have
2
@w, = Ug ©ou) > & dn el
2
-k, [l

This shows us that (y_,_q)e > 0, and (g,}_x_)e = 0 1f and only 1if u =0

which proves that (w.)ea is an inner product on H.

Finally, we must prove that (g,s)e is equivalent to the inner

product defined on H. This follows from the inequalities, using (7-14)
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Ia

2 2 2 12
Hally = dm Hu 15 < 26 1am [lu g = 2 1ul 1y

|v

al12 = gam 1w 112 2 ) dm 115 = &yl lul I

Therefore, we have defined an inner product on H, (.,.)e, which is
equivalent to the original inner product defined on H. ged
It remains to prove the dissipativity of the operator -A.

Lemma 7.1.6. Let A be the abstract operator defined in (7-7).

Then -A is strictly dissipative with respect to the inner product (e,.)e
if a > 0, and is dissipative with respect to (.,.)e if a = 0, where a is
the coefficient in (7-3).

Proof. This lemma is proved in 3 steps.

(i) TFirst, we show that ~A is strictly dissipative on D(To)xD(To)
if a > 0, and is dissipative if a = 0. Let us pick

u

1
u . aD(TO)xD(To)CS.
2
Since AueD(S) and (°")e coincides with (e,.)s on D(S), if we let kl =

min {k,1}, where k is the constant in (7-4{iv)), we have the following

inequality from lemma 7.1.1, and the definitions of the operators S and A,

(u,-Aw) = (_q,-A_q)s = (W8 (AW

2

[ul,uz], 2To+a I aI u,
al 21 ~T u=-au
o 2170

1

- 2 2
[ul,uzl, 2Tou2+a u2~aToul—a u,

L au2—2T0u1—23u2 o

[ul,uz], 2Tou

z—aTOu

L—-Zroul—au2 o



162

Z(ul,Touzl:a(ul,Toul)o—Z(uz,Toul)o—a(uz,uZ%)

= —a(ul,Toul%ra(uz,uZ)o

2 2
< _akl Iull lm"a’ |u2| lo
2 2
A —akl[Hule + Hquo]
2
- -l 1al1?
k 2
<=2 |wflg
2k
o
2
= -8]|ull]
ak
where B = T 2 0, and B = 0 if and only if a ='0. (7-15)
o

This proves that —A is strictly dissipative on D(To)xD(To) if a > 0 and
is dissipative if a = 0.
(11) Secondly, we show —-A is strictly dissipative on D(T)xD(To)

if a > 0, and is dissipative if a = 0. Letting
%1
u= eD(T)xD(TO)

be)

we see that AueD(S) and

(@ (DY, = Ha (o, (DW= Ha (4,560, =

(u,5(-a)uw) o

where u eD(S8) such that u u as n >,

-+
—_ — H
Therefore,

(@, AW, = W@ SEAW | = /lup,u,L[21 +a’T o1 u,

I - -
a 21 Tu1 au2 A
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=2(ul,Touz)o—a(ul,Tul)o—Z(uZ,Tul)o-a(uz,uz)0°
Since T is the smallest closed extension of To in LZ(Q), there exists a

sequence vneD(To), such that

v

— u,, and T v =+ Tu, as n =+ o,
n 1

@) on LZ(Q) 1

2
From lemma 7.1.1,

(u2’Tul)o = %&3 (u2’Tovn)o = %ig(TOUZ’vn)o - (Touz’ul)o =_(u1,T°u2 o

Let us define

“n " | V| en(z )a0(T )CD(S).
u
2
I assert
un -> y_ as n =+ o,
— H
Indeed, it suffices to show
v — u
n Hm(9> 1 as n > o,

From lemma 6.2.1, and the fact that v, uleﬁg(ﬁ) we have the following

inequality
Hv ~ull, < e v o, < ceq T v ~Tu I] + [lv -u ] 1.
Since the term on the right converges to 0; as n + «

a n > o

which proves the assertion.
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Since (c,a)e is equivalent to (°”)H’ we have

gl #y Hall, as > -

Therefore, from part (i)

(u, 0w = 2(u;,T uy) -a(u;,Tu) -2(w,,Tu;) -alu,,u,)
= ~a(u1,Tul)o—a(u2,u2)o

= lin [a(vn,(—To)vn)o*a(uz,uz)o]

= g (. M),

iA

2
-8 [lul1g

= -8|ul]?

akl

2ko
a > 0, and is dissipative if a = 0.

where B = . This shows —A is strictly dissipative on D(T)xD(To) if

(iii) Thirdly, we show -A is strictly dissipative on D(A) if
a > 0 and is dissipative 1f a = 0. Let
Y1
u = eD(A) = D(T)xH-(Q).
- u2 B

Since uzaﬂg(ﬂ), there exists a sequence wneD(To), such that

u as n +» «

w 2

—
Dy q)
and from the continuity of the injection mapping from Hg(ﬂ) into Lz(ﬂ)

w_ 3+ u as n + «,
n LZ(Q) 2
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If we define
u = u1
n W eD(T)xD(To)

we see that

u as n > o

m 4

u
o

and

-W -u

]
o
+
N
>
le
[V
/s
o)
¥
8

Aun
—_- Tu.,+aw Tu,+au
n
Since (.,.)e is equivalent to (.,.)H, we have that
leglle 7 Hall ane lasgll, =y @lasl | os 5+ o
Therefore, from part (ii)

(u, (-A)y_)e = lin (EE" (—A):Il)e

iA

-8 Lu [u |l
ak

= 'BHP.”é! where B = ETC—;

=

Hence, we have proved that ~A 1s strictly dissipative with respect to
(.,.)e if a > 0, and is dissipative 1if a = 0. qed

We are now ready to prove our main result, and solve the
stability problem for (7-3).

Theorem 7.1.1. Let us consider the initial-boundary value prcblem

(7-3) satisfying the conditions (7-4). Then, for any UO(X)ED(T) = H§m<9)
and for any vo(x)eﬂg(n), there exists a unique generalized solution, u{x,t),

of (7-3) such that u(x,t) satisfies the boundary conditions in a generalized
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sense (if n = 1, in the classical sense), and satisfies the initial

conditions

U(X,O) = uo(x) 2

Furthermore, the null solution is asymptotically stable with respect to
the L2 - norm if a > 0, and is stable if a = 0.

Proof. We define the abstract operator A as in (7-7) on the
real Hilbert space HEHz(Q)xLz(Q) obtaining the abstract operator equation in
(7-9). From lemma 7.1.3 we have that A is a linear operator with domain
and range both contained in H, such that D(A) is dense in Ii and R(I-(-A))=H.
From lemma 7.1.6, —-A is strictly dissipative with respect to (.,.)e if
a > 0 and is dissipative if a = 0. We can now use the results of lemma
6.1.2, that is, for any

u

=| °|eD@a) = Hﬁm(ﬂ)xﬂg(ﬂ)

v
o

U
-0

there exists a unique solution u(t) of (7-9), such that for any t>0,
u(t)eD(A), and u(o) = u - Also, since 0e)(A) and A(Q) = 0, the null
solution is asymptotically stable if B > 0, and is stable if B = 0., From
this result, we have for any uo(x)sﬁgm(ﬂ) and vo(x)eHg(Q), there exists

a unique generalized solution, u(x,t), of (7-3), such that for any t>0,
u(x,t)eHﬁm(ﬂ) and u(x,0) = uo(x) and %%SELQL = vo(x). Also, u(x,t)
satisfies the boundary conditions in a generalized sense (if n=l, in the
classical sense). Finally, the null solution is asymptotically stable 1if

a > 0 (and is stable if a = 0) with respect to the L2 ~ norm., ged

7.2, Stability of the Solution of a

Nonlinear Initial-Boundary Value Problem
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In the previous section, sufficient conditions were given on
the system (A(x,D),{Bj},Q) to guarantee the existence, uniqueness and
stability of the solution to a linear initial-boundary value problem.
In this section, we generalize the results of section 7.1 to the nonlinear
case and sufficient conditions are given to ensure the stability of the
solution of the nonlinear problem described below.

Let us consider the following initial-boundary value problem:

2

§—§L§L£l + a %%LELEL-+ A(x,D)u(x,t) = f(x,u,%%)xeﬂ,qu
ot
Bj(x,D)u(x,t) = 0 xedQ,t>0 (0<j<m—1)

(7-16)

u(x,0) = u_(x), 20050 & v )

where A(x,D) and B, (x,D) are defined as follows,

3

AGDIC) = T1o1 16 |<m (—1){”'9°<apo(x>n°<->>
h
Bj(x,D) = zlhlimjbjh(x)D (0gj<m-1)

where the system(A(x,D),{Bj},Q) satisfies condition (7-4) and is defined

on the real base Hilbert space H = Hg(Q)XLZ(Q) and f(x,u;%%) satisfies the
following condition:
f is defined on all of H;(Q)XLZ(Q) into LZ(Q), and there exists
a constant k > 0, such that for any ul,vleHz(Q), and for any
uz,vzeLz(Q)
(7-17)
£ G u)=E vy v | < KT gl 19%00% 1241 v, 1202,

As in section 7.1, we define

u

u={"1] = eH Hg(g)xLz(n)
2

T 3u
ot
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£ =1 ° eH (7-18)

f(x,ul,uz)
and A is the abstract operator defined in (7-7) which leads to the
abstract evolution equation

du(t)
dt

+ Au(t) = £(u)

(o) = u. (7-19)

Utilizing the results of section 7.1 we are ready for the main result
of this section.

Theorem 7.2.1. Let us consider the initial-boundary value

problem (7~16) such that the system (A(x,D),{Bj},Q) satisfies (7-4) and

the nonlinear function f satisfies (7-17). Then, for any uo(x)eﬂgm(ﬂ) and
for any vo(x)eﬁg(ﬁ), there exists a unique generalized solution, u(x,t), of
the equation (7-16), such that for any tzp,u(x,t)eﬂgm(ﬂ) with u(x,0) = uo(x)
and %%15121 = vo(x), and u(x,t) satisfies the boundary conditions in a

generalized sense (if n=1, in the classical sense). Furthermore, if

f(o) = 0, the null solution, is asymptotically stable if

k k
k <(-2-1%)1/2B, and is stable if k = (—2—1% )1/26, with respect to the L2 - norm,
[¢] (o]

where ko,k2 are defined in (7-14) and 8 is defined in (7-15).

Proof. We define the abstract operator A in (7-7) and f in
(7-18) with the corresponding abstract operator equation (7-19) defined
on the real Hilbert space H = H[;(Q)XLZ(SZ)° From Lemmas 7.1.3 and 7.1.6 we
have that A is a linear operator, with domain and range contained in H such
that D(A) is dense in H, and R(I-(~A)) #= H., Also, -A, satisfies the

inequality: there exists a constant B > 0, such that for any ueD(A)

(u,-aw)_ < -8]|ull2
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where ("')e is the equivalent inner product on H, defined in lemma
7.1.5, and B is the dissipativity constant defined in (7-15). Now, let

us consider

£(u) =| °

f(x,ul,uz) .

f is defined on all of H = H:(Q)XLZ(Q) into H?(Q)xLZ(Q) and for any

u,veH such that

u v
a=i 1 y= ! eH,
Y2 V2
since
0
f(W-£(v) =

f(x,ul,uz)—f(x,vl,vz)

we have the following inequality, from (7-17)

A

1/2
HEw-t@ ], < @)™ Ew-£W] ],

i

1/2
@ )2 £ Gryug uy) £ Geuvy v ) ||

1/2

IA

(2ko) k[xlali ml lDaul—Davl‘ l(z)'l" qu—vzl ‘i]l/

= (Zko)l/zk[|lul—vl||;+||u2—v2||§]1/2
= @ ) 2| [uevl |,
2k
1
< 65D 2] vl |

Hence, the hypothesis of lemma 6.4.1 is satisfied and applying the
results, 1f we let

u (x)
° eD(A) = Hgm(ﬂ)xﬁz(n)

3:

v@(X)
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then, there exists a unique solution, u(t) of (7-19) with u(o) = u and

k
if £(0) = 0 the null solution is asymptotically stable if k < (5%-91/26,
k o
and is stable if k = (—2—13—)1/23, with respect to the H=norm, where ko,k2 are
o

defined in (7-14) and f is defined in (7-15). TFrom this result, we have

that there exists a unique generalized solution, u(x,t), of (7-16), such

du(x,t) .m _
. EE£~4—2€HB(Q), with u(x,0) = uo(x) and

%%55292—-= v (x). Also, u(x,t) satisfies the boundary conditions in a

generalized sense, if n = 1 in the classical sense. Finally, if £f(o) = 0,

that, for any t>0, u(x,t)eHﬁm(Q)

k
the null solution is asymptotically stable if k < C§%~?1/28, and is stable
ky \1/2 2 °
if k = () '8, with respect to the L"-norm. qed

2k
o
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7,3, Applications to Partial Differential Equations

There is a large class of physical problems which fit into the
theory developed in sections 7.1 and 7,2, among these being the wave
equation. In this gection, we consider some applications which
illustrate how the theory can be applied to solving specific problems,
In section 7,31, we consider a Dirichlet problem and show that the
result obtained by Pao and Vogt in [24] is just a special case of the
results in 7.1 and 7.2, In section 7.32, we consider some specific
examples which show how the theory can be applied to solving a large
clags of initial=boundary value problems,

7.31. Dirichlet Problem
In this example, we show that the Dirichlet problem worked out

by Pao and Vogt in [24] is just a special case of theorems 7.1.1 and

702010
Pao considered the following initlal-boundary value problem
azu(x,t) dulx,t) n ] du(x,t)
+ a - Z «“’(aij(x)=—~—--)- c(x)u(x,t)
at2 ot 1,3=1 x4 3%y
ou du
s f(Xyu, ===, =) xeQ, t>0
axi axj
(7=20)
u{x,t) = 0 x€09Q, t>0
du(x,0)

u(x,0) = uo(x), = vo(x)

ot

where we define the operators



A(x;D) (s} = ~Z (a j(X) j(0)) - c(x)

1,=1 axi
Bo(D) = I (where I is the identity operator)

and the system (A(x,D),B,,Q) satisfies the following conditions,
(1) a >0, Q is a bounded domain in Rn, n > 1, such that 3Q
is of class C*, locally on one side of Q.

(1) aij(x) = 3y

such that max c(x) < 0, and we let ¢, = min(~c(x)), Cy = max(=c(x)).

xef Xe Xe

J® e @ Qi) cw. e e @

(i11) A(x,D) is strongly elliptic in Q of order 2m = 2, that
is, there exists a constant g > 0, such that for any
g = (51,...,§n) € Rn, and any x € Q

n

n
2
) a,(x)E.E, > o] £
g,qm MY =0

(iv) f is a nonlimear function defined on all of H(J;(Q)xLz(Q)

into LZ(Q), and there exists a constant kl > 0, such that for any

1 2
Uy, vy € HO(Q), and any u,, v, € L7(Q)

l |f(x9u1,u2) = f(xﬁvlsvz) | lo

f,,kl[H“]_“'V]_Ho"’ X Haxi 3xiH°+ H“z""z” ] .
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We show that for any uo(x) € Hz(sz) N 1»13"((2)9 and any vo(x) € Hi(ﬂ)

there exists a unique generalized solutdon, u(x,t}, of (7-20) such that

for every t > 0, u(x,t) ¢ Hz(sz) N Hi(a)9 satisfying the boundary
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conditions in the generalized semse (if n = 1, in the classical sense),

with

u(x,0) = u_(x), %-?5-9-&& = v, (x).

Also, if £(0) = O, the null solution is asymptotically stable if

k2 1/2 k2 1/2
ky < ( = ) B8 and is stable if ky = ( T ) B with respect to the
o

Lz-norms where kys k, are the constants in (7-14), and 8 = %iﬂiﬁﬁiails
where k = min(a,cm)° °
We asgert that the system (A(x,D),BO,Q) satisfies (7-4). It
should be noted in this example that H%(Q) - Hi(ﬂ) (see remark 3.46.1).
From the hypothesis, we have the smoothness condition on Q and
the strong ellipticity of A(x,D)., It was shown in example 5.21.1 that
{B } is a normal system and satisfies the strong complementary condi-
tion (if n=1, B and B are each 1inearly independent)
The coefficients of A(x,D), B (D) are 1nfinite1y differentiable.

A(x,D) is formally self-adjoint, in the sense that for any

u,v € C;(Q)
(u,A(x,D)v)O - (A(x,D)u,v)o.
Indeed, from integration by parts and the boundary condition

(u,AGx D)WY = | ucxnaz 1'5”” (o, () -4;3-51‘24 - e(x)v(x)]dx
1,4

- Igz j(x) 22&§2;»Z£§l»dx s jQC(X)u(K)v(x)dx
i,3=1 *



" ”f Z 11 lV(X) (a j(x) %ﬁiﬁl*)dXBIQc(x)v(x)u(x)dx
2 J= *5 i

= v(x)[wz 3—-; (00 3 a“"") ex)ux)]dx
1,5=1°

= (V,A(x ,D)U)o ®

It is clear from the above equality, that for any u,v ¢ C;(Q)

n
[ u(x)[=] 2 (agx) Ey L c(x)v(x) 1dx
Q 9% 3 9x

i,i=1 i 3

= f [Z laij(x) 35552--215l-- ce(x)u(x)v(x)]ldx
1,3= i

It remains to show that there exists a constant k > 0, such

that for any u ¢ CB(Q)
(u,A(x,D)u) > k||u||2
LA b 0 == l’

where ||u||i is the norm on Hi(ﬂ)o Indeed, from integration by parts,

the boundary conditions and the strong ellipticity of A(x,D), we have

for any u ¢ C;(Q),

(u,A(x,D)u) = =f Z - lu(x) %;;{a (x) %ﬁfﬁlodx - Joetyu?(x)ax

13

n
= IQZi . 140 %ﬁ&%ﬁsﬁx + fnlwc(X)}uz(x)dx
o= i h]

> afg Z (38 y2ax + ¢ uf gt 2 (x)dx
Vimy %y
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n
2 min(e,e ) [fol ¢ %—”;gﬁ y2ax + [ u’(x)ex]
1=1 %%y

2
= min(a,cm)||u||l.

Finally, we see that f satisfies (7-17), Indeed, from the hypothesis,
f is defined on all of Hi(ﬂ)xLz(ﬂ) into LZ(Q) and there exists a con-

stant k, > 0, such that for any u;,v; € Hi(Q) and any Uy, € LZ(Q)

2

!|f(x,ul,u2) - f(x,vl,vz)llo

1/2

<o 1247 1] o2 e o (12 4 {fumv. |12
-1 171, i=1 %4 9%y o 2 2''0

1/2

:kIIX | lDaulﬁDav]_l I(ZJ + l qu"vzl Izl °

aj<l

Therefore, we have verified the hypothesis of theorem 7.2,1 (if
f(x,u, %ﬁ;, %%—) = 0, we can use theorem 7.1.1) and the results apply,
This gives us our desired conclusion and shows that the result in [24]
is a special case of theorem 7.1.1 and 7,2.1.
7,32, Specific Examples

In this section, we give specific examples which show how cer=

tain stability problems fit into the theory developed in sections 7.1

&nd 7;29

Example 7,32,1. Consider the following nonlinear initial=bound-

ary value probdem stated in Lions and Magenes {[18]
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2
2800E) - pu(x,t) +bu = £(u, $2)  xe9, £20
at

(7-21)

%ﬁiﬁaﬁl = 0 xed t>0

u(x,0) = u (), 2D oy )

o 2
where A(D), BO(D), @ and the function spaces CB(Q), HB(Q)’ and

H%(Q) are defined as follows:

"o 2
A(D) = <Atb = =] (z=)"+b
i=1 %%

where the order of A(D) is 2m = 2, and b > O,

- O
BO(D) T

Q is a bounded domain in Rn, n > 2, such that the boundary, 3Q, is of

class G, locally on one side of @,

G = {ue C@ | -g% = 0 on 30}
Hg(ﬂ) = completion of C;(Q) with respect to the Hzanorm
= {u € HZ(Q) | <Bu> = 0}
o 1/2
H;(Q) = completion of cg(a) with respect to the Hlunorm.

1
f is, in general, a nonlinear function which maps all of HO(Q)XLZ(Q)
into LZ(Q)a and theve exiete a congtant kl > 0 such that for any

uysVy € Hﬁ(ﬂ) and UgpVy € LZ(Q)
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|lf(ulsuz)“f("lsvz)”o:,kll | l“l”"ﬂ|°+zial| |~5=;;; - ?;Il |°+| |ug=vy | I'T

We assert that problem (7=21) verifies the hypothesis of
theorem 7,2.1 from which we have the following result: for any
uo(x) € H:(Q) and any vo(x) € Hi‘(ﬂ)9 there exists a unique generalized
solution, u(x,t), of (7-20), such that for every t > 0, u(x,t) ¢ H%(Q),
with u(x,0) = uo(x) and %%SEAQL = vo(x). Also u(x,t) satisfies the
boundary conditions in a generalized sense and if £(0) = 0, the null
solution is asymptotically stable if k < ( ;%; )1/ZB, and if
k = ( ;%: )1/29 is stable with respect to the Lzsnorm, where k, ko
are the constants in (7=14) and g = min[l,b]Co, where C, is the con-
stant in the inequality ||u||° :_Collulli.

First, we must show that the system (A(D),B,,Q) satisfies
(7=4) , where we let H = H%(Q)xLz(Q).

The smogthness of 3Q 1s seen from the hypothesis. The fact
that A(D) is strongly elliptic in Q is proved in example 6.52.1,

{Bo} is a normal system since the order is m_= 1, and is of the form

o
(5-8) and satisfies the equivalent definition 5.21.3. Since B, s‘%;,
we see as in example 6,52,1, that {Bo} satis’les the strong complemen~-
tary condition. Also {Bo} is independent of time.

We must now show that A(x,D) is formally self-adjoint, that is,

for any u,v ¢ C;(Q)
(uaA(D)V>° = (A(D)u,v)oa

Thiz follows from Green's formula, as found in Mikhlin [21], and

uging the boundary conditions, letting u,v e Cg(Q)
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(u,A(D)v)o = fﬂu(x)[wAv(x)+bv(x)]dx

= ajgu(x)Av(x)dx + bfnu(x)v(x)dx

n
- dulx v(x) - v {x
jﬂzisl( Xg )¢ Ixy Yax = [ ﬁgld(m)
+ bfgu(x)v(x)dx
= —-fgv(x)Au(x)dx + fagv(x) -g-:—“ﬁ‘ld(an) + bfﬂu(x)v(x)dx
= va(x)[aAu(x)+bu(x)]dx

= (v,A(D)u),.

Also, from the above equality, we have for any u,v ¢ C;(Q)

n
9 ]
[ e () [=4v () +bv () Jdx = jgtzialcﬁ-i-’il) <$2-) + bulx)v(x)]dx.
Let u ¢ Cfs(s'z)9 we have
(u,A(D)u)° 3'k||u||§

where k = min[1l,b]. Indeed, from Green’s formula and the boundary

conditions
(u,ADIW) , = ~f B su(x)dx + b fguz(x)dx

n
= IQZi 1( *ﬂLig: 2 )de ”Iag“(x) %%Q&L d(3Q)
= i
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4 bfguzdx

i
- I, ¢ g:(x) )oax + b u®(x)dx

n su(x) .2 2
Zﬂmin[l,b}{fgzisl( 3;§- Y dx + jQu (x)dx}

=k |lull], ®=mnta[L,p] > 0.

The nonlinear function, f, satisfies (7=17) as was proved in
gsection 7,31, and the hypothesis of theorem 7,11 has been verified,
Now, applying those results, we obtain the desired conclusion, The
same results can be verified readily for the case n = 1,

Example 7,32,2, We will now solve the problem considered by

Movchan in a paper [22], where he considered the stability of elastic
systems., We will rigorously show this problem fits into our theory,
The system satigfies the following equation
U068 4 (2 gty - 0L ) Pute,0) = 0 %e[0,1],60
at

with the boundary conditions

2 2
u(0,t) = (Z=)%(0,t) = 0, w(1,0) = (=) %@,y =0 €30
(7=~22)
where B > 0, and we define the operators A( )9 pt ( ),
+( )g B~ ( Bx Vs Bl( ax ) and the function apaces, H [0 1], and

“3“’91]”

4

) ) - A
A(";;)ﬂ(“g; = a{ 3= )
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where the order of A( %;&) is 4, and m = 2,

B (& u(,t) = u(l,0), B (& )u,n = (=%,

BT )u(0,8) = u0,8),  Bi( 2= )u©,0) = ( & )2u0,)
0 9% $ =70 1% ax § % ullls

H§[091] = completion of C;[O,ll with respect to the H2=norm
4 4 d .2 d 2
Hy[0,1] = {u € H'[0,1]|u(1)=( gz ) “u(1)=u(0)=( 3= Yu(0)=0}

and we let the base apace be H = Hé[OQl]XLZ[O,I].

We will show that problem (7-22) satisfies the hypothesis of
theorem 7,1,1, which gives us the result that for any uo(x) € H;[D,l]s
and vo(i) eHﬁ[O,l], there exists a unique generalized solution, u(x,t),
of (7=22), such that for every t > 0, u(x,t) € H;%O,l], with
u(x,0) = uo(x) and %%£5492== vo(x)g Also, u(x,t) satisfies the boundary
conditioné in the classical sense and the null solution is stable with
respect to the LGnorm.

We must prove that the system (A( %;-). {B+,B;}) satisfies (7=4),
A(D) is obviously strongly elliptic and the boundary operators {B:,B;}
are linearly independent, since the orders are distinct. The same
applies to the system {B_,BJ},

A -g-;») is formally self-adjolnt, Indeed, letting
u,v € Hglo,l], we have from integration by parts and the boundary

conditions

1 d 4 d 2
(AC = W) = [ w0 [ S ) vlm) = b( &) v lax
o]

1 d 2 d 2
= [ ( o) v (3 ) vixddx
[+]



3 1
F () v - BEL ) v

o

1 1
+bf (G LDy - g wey (RO
o o

1l d 4 1 4 2
= fo( = ) u(x)-v(x)dx = b];( o ) u(x)vix)dx

1 4 4 a 2
= [ [(g) v = b( &) ux)]vx)dx
o

9
= (A( ‘a‘; )ugv)oo
4
From the above equality, we have for any u,v € HB[O,l]

1 4 2 1 2

2
Jweo R ) veo-6) velen = ] 16 vt G v +p g S0 ) 4y,

Finally, for any u € Hg[(),l]

2
(u,A( %}? Yu) ;klnullz for some k, > 0.

Indeed, from integration by parts, the boundary conditions, and the

well known inequality since u(0) = u(l) = 0O
1 2 1
[ OS5y x> 12 wx)ax
1] o

we have
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S RN EIOUT Yl - b0 $= %00 1ax

i 1
= [ [( g;)zu(x)]zdx +bf (%—%ﬂ)zdx
o 0

{x)dx

1
>f[( Sy Zu(x) 1 2ax + f(““"‘% +-’£2-211fu2
[+]

> min[1,2 b a2t f (1 2 GEEL 2 + () dax

92!
2

= k||u|| .

2

Hence, we have shown that the system (A( ) {Bj }) satigfies

the hypothesis of theorem 7.1.1 and we obtain the desired result,

since a = 0,
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8.0. CONCLUSIONS
8.1. The Objective of the Research
The objective of the dissertation is to. establish some criteria
for the existence and uniqueness as well as the stability of the solution
to linear and nonlinear partial differential equations with general

boundary conditions. The following initial-boundary value problems are

considered

%%LELEL-+ A(x,D)u(x,t) = f(u)

(8-1)
azu(x t) du(x,t)
e - 2 + A(x,D)u(x,t) = f(u) (8-2)
2 ot
ot
with general boundary conditions
Bj(x,D)u(x,t) = 0 (0<j<m—-1)

and initial condition

u(x,0) = uo(x)a
With the correct definition of the base Hilbert space, H, equations (8-1)
and (8-2) with the boundary conditions and initial condition are reduced

to the abstract operator equation

__S-lg‘tl £+ Au(t) = £(u) (8-3)

u(o) = u

where A 1s the abstract, linear, unbounded operator extension of A(x,D)

defined on part of the real Hilbert space H, and f is a nonlinear function

on all of H into itself. Pao in [23] developed a stability theory for the

abstract equation (8-3), in which sufficient conditions were given to ensure

the existence, uniqueness and stability or asymptotic stability of the

solution of (8-3). Stability criteria is then established for the problems
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(8-1) and (8-2) from the results obtained for the abstract equation (8-3).
First, the initial-boundary value problem (8-1) is considered,

for the linear case, £(u) = 0. By defining the base Hilbert space as

H = LZ(Q), and defining the appropriate abstract operator, the abstract

operational equation (8-3) is formed and utilizing the results of Pao [23],

a stability criteria for the system (A(x,D),{B,},R) is established. The

3
nonlinear case, f(u) # 0, is considered, and by placing additional restrict-
ions on the function f, criteria for the existence, uniqueness and stability
of a solution are obtained. Since the boundary conditions for the cases
n > 2 and n = 1 differ , these cases are treated separately.

Next, the partial differential equation (8-~2) with general boundary
conditions is considered. For the linear case, £(u) = 0, by defining
the base Hilbert space as H = Hg(n)xLz(ﬂ) and the correct abstract operator,
A, as a 2 x 2 matrix with operaﬁor elements, the abstract operator
equation (8-3) is formed, and by defining an equivalent inner product on
H, stability criteria is established for the abstract equation (8-3), and
from these results, sufficient conditions are placed on the system(A(x,D),
{Bj},ﬂ) which guarantees the existence and stability of the solution to (8-2).
Placing additional assumptions on the nonlinear function f # 0, guarantees
a stability criteria for the nonlinear problem (8-2).

Applications are given which show how the theory can be applied
to many physical and engineering problems. In particular, it is shown that
the Dirichlet problem is just a special case of the general theory, and how
we have generalized the theory to include a much larger class of problems.

In the following section, a brief description of the main results of this

research are given,
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8.2. The Main Results

The initial-boundary value problem (8-1) with general boundary
conditions are investigated in Chapter 6.0. The linear case, f(u) = 0,
is considered first. By constructing the abstract operational differential
equation (8-3), the operator extension, A, of A(x,D) is shown in lemmas
6.2.3 and 6.2.4 to be the smallest closed linear extension of A(x,D)
defined on C:(Q)° Sufficient conditions are given in theorem 6.2.1, to
ensure the existence, uniqueness, stability or asymptotic stability of the
solution to the linear problem. The one-~dimensional case, n = 1, is con~
sidered separately and stability criteria is established in theorem 6.3.1.
With additional assumptions on the nonlinear function, £(u) # 0, the
nonlinear stability problem is then solved for the case n 5_2, in theorem
6.41.2. For the case n = 1, the results are found in theorem 6.42.1l. 1In
theorem 6.51.1, it is shown that the Dirichlet problem worked out by
Buis in [7] is a special case of theorems 6.2.1 and 6.3.1. Specific
applications are worked out in examples 6.52.1 and 6.52.2.

The initial-boundary value problem (8-2) with general boundary
conditions are investigated in Chapter 7.0. The linear case is first
studied. With an inner product (°’°)e on H, defined in lemma 7.1.5, which
is proved in this lemma to be equivalent to the original inmer product
defined on H, conditions for existence, uniqueness, stabillity and asymptotic
stability are established in theorem 7.1.1. By imposing additional restrict-
ions on the nonlinear function, f(u) # 0, the nonlinear problem is solved
in theorem 7.2.1. In example 7.31.1, it is shown that a Dirichlet problem
worked out by Pao and Vogt in [24] is just a special case of theorem 7.2.1.

Specific Applications are worked out in examples 7.32.1 and 7.32.2.
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8.3, Some Suggested Further Research

In this work, we have studied the initial-boundary value problems
(8-1) and (8-2) with homogeneous boundary conditions. Lions-Magenes in
[18] solved the existence and uniqueness problem for the nonhomogeneous -
elliptic equation
A(x,D)u = £(u) on f

Bj(x,D)u = gj on 3 (0<j<m-1).

The methods used here and the work done in [18] suggest an approach to
establishing a stability criteria for the nonhomogeneous initial-boundary
value problem, which include the homogeneous problem as a special case.

The stability problems (8-1) and (8-2) hawe been solved in a
Hilbert space context. Pao in [23] established a stability criteria for the
operational differential equation (8-~3), in a Banach space using semi~scalar
products, suggesting this work can be done in a Banach space setting.

Stability is a norm property, and stability criteria iz established
with respect to the Lz-norm. From the Sobolev Imbedding theorem which
states that if Q is smooth enough and m is a large enough integer,
Hw(Q)cCO(ﬁ), and if ueHm(Q)CCO(Q), then pointwise stability can be considered.
This suggests that possibility of defining a different base Hilbert space,
say Hm(Q), and establishing a stability criteria with respect to the

m
H -norm.
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Appendix A
In this Appendix we will prove that the following two definitions

are equivalent:

Hém(ﬂ) = completion of C;(Q) in the Hzm—normf
Hgm(n) = completion of Cgm(ﬂ) in the Hzm-norma

The proof uses the following facts found in Schechter [44], and properties

of {A(x,D),Bj(x,D),Q} satisfying (5+9). Letting

R = {feLz(Q)lthere exists a ueHzm(Q), such that Au=f, and
Bju = 0 on 3Q (0<j<m-1)}

N = {ueﬂzm(Q)IAu=O, B,u = 0 on 3R(0<j<m-1)}

3

From the definition of R4'= {geLz(Q)l(g,f)o = o, for all feR}, and
similarly Nnge have from Schechter [24] the following facts:

(1) Nec @)

(11) ReC (@)

(ii1) There exists a k, > 0, such that for every usNJ}

1

- '
ol = 11108l + D525 <800y 3]
2

(iv) there exists K, > 0, such that for every ueHzm(Q)

2
aull, < &, lull,, .

Let uecgm(ﬂ), and € > 0 be given. We will show by construction there
exists a zeCZ(Q) such that Ilz-ullzm < €., From the General Projection

theorem in [24], since N 1s a closed subspace we can let
¥ 111 % “a’ "
u=u +u , where u’eN  and u'eN.

There exists a veCw(ﬁ), such that Ilu'avllzm < g. Also, from the General



Projection theorem in [24], since R is a closed subspace in LZ(Q), we have
L
Av = f + g, where feR and geR

We can see since v,gecw(ﬁ), that fsd”di), By definition of R, and from
remark 2.1, theorem 2.1 in [24], we can see there exists a weCw(ﬁbnN
such that

Aw = f, ij =0 on 3.
" 2m
We can now see since Au’ = 0, and ueCB [€1))

A(w-u') = Aw-A(u~u") = £ - Au

w-B,(u-u") =0 on 39.

B, (w-u') = Bj j

3

I now assert that

S |
y
To prove this we note that since feR,Au' = AueR, f-Au'eR and geR™, from

Yosida [35], (f-Au') + geR + o imply

|| £-aut+g] |2 = |[£-a0']|2 + |]g] |2

thus, from facts (iii) and (iv),

IA

[ o g < Ky aGomutd 1] = [ mau] | = & ] £-aot]

1/2

IA

2 2
& [E-aur (12 + [1g] 12
[o] 8]

K| E+ g - au'|]

KlllAv—Au‘llo

A

Klellv—u'I!Zm

AN

eKlK2

Now if we defime z = whu", we see that since wecmfﬁ}nN and B,w = 0 on 38,

3
and u''eN, that zeC:{ﬁ)g Finally

[lemul Ly = Hbuteul |y = [lom0' g < 6Ky aed
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The Research Results

The present status of the research is described in the technical
report "'Stability of the Solutions of Elliptic Partial Differential
Equations with General Boundary Conditions" by Eugene Jacob Reiser,

10 copies of which are beiﬁg forwarded to NASA Headquarters.

Possibilities For Future Research

Future research should concentrate on extending the class of
nonlinearities which can be handled within this framework and to
broaden the class of Lyapunov functionals considered. Also, specific
applications should be considered, and.in'connection with this, certain

computing techniques should be implemented.



