87 research outputs found

    The Effect of Dietary Carbohydrate and Fat Manipulation on the Metabolome and Markers of Glucose and Insulin Metabolism: A Randomised Parallel Trial.

    Get PDF
    From Europe PMC via Jisc Publications RouterHistory: ppub 2022-09-01, epub 2022-09-07Publication status: PublishedHigh carbohydrate, lower fat (HCLF) diets are recommended to reduce cardiometabolic disease (CMD) but low carbohydrate high fat (LCHF) diets can be just as effective. The effect of LCHF on novel insulin resistance biomarkers and the metabolome has not been fully explored. The aim of this study was to investigate the impact of an ad libitum 8-week LCHF diet compared with a HCLF diet on CMD markers, the metabolome, and insulin resistance markers. n = 16 adults were randomly assigned to either LCHF (n = 8, <50 g CHO p/day) or HCLF diet (n = 8) for 8 weeks. At weeks 0, 4 and 8, participants provided fasted blood samples, measures of body composition, blood pressure and dietary intake. Samples were analysed for markers of cardiometabolic disease and underwent non-targeted metabolomic profiling. Both a LCHF and HCLF diet significantly (p < 0.01) improved fasting insulin, HOMA IR, rQUICKI and leptin/adiponectin ratio (p < 0.05) levels. Metabolomic profiling detected 3489 metabolites with 78 metabolites being differentially regulated, for example, an upregulation in lipid metabolites following the LCHF diet may indicate an increase in lipid transport and oxidation, improving insulin sensitivity. In conclusion, both diets may reduce type 2 diabetes risk albeit, a LCHF diet may enhance insulin sensitivity by increasing lipid oxidation

    Sarcoendoplasmic Reticulum Ca2+ ATPase. A Critical Target in Chlorine Inhalation–Induced Cardiotoxicity

    Get PDF
    Autopsy specimens from human victims or experimental animals that die due to acute chlorine gas exposure present features of cardiovascular pathology. We demonstrate acute chlorine inhalation–induced reduction in heart rate and oxygen saturation in rats. Chlorine inhalation elevated chlorine reactants, such as chlorotyrosine and chloramine, in blood plasma. Using heart tissue and primary cardiomyocytes, we demonstrated that acute high-concentration chlorine exposure in vivo (500 ppm for 30 min) caused decreased total ATP content and loss of sarcoendoplasmic reticulum calcium ATPase (SERCA) activity. Loss of SERCA activity was attributed to chlorination of tyrosine residues and oxidation of an important cysteine residue, cysteine-674, in SERCA, as demonstrated by immunoblots and mass spectrometry. Using cardiomyocytes, we found that chlorine-induced cell death and damage to SERCA could be decreased by thiocyanate, an important biological antioxidant, and by genetic SERCA2 overexpression. We also investigated a U.S. Food and Drug Administration–approved drug, ranolazine, used in treatment of cardiac diseases, and previously shown to stabilize SERCA in animal models of ischemia–reperfusion. Pretreatment with ranolazine or istaroxime, another SERCA activator, prevented chlorine-induced cardiomyocyte death. Further investigation of responsible mechanisms showed that ranolazine- and istaroxime-treated cells preserved mitochondrial membrane potential and ATP after chlorine exposure. Thus, these studies demonstrate a novel critical target for chlorine in the heart and identify potentially useful therapies to mitigate toxicity of acute chlorine exposure.This work was supported by the CounterACT Program, National Institutes of Health, Office of the Director, and the National Institute of Environmental Health Sciences grant U54 ES015678 (C.W.W.), and by Children’s Hospital of Colorado/Colorado School of Mines Pilot Award G0100394 and a Children’s Hospital of Colorado Research Institute’s Pilot Award (S.A.)

    The Effect of Dietary Carbohydrate and Fat Manipulation on the Metabolome and Markers of Glucose and Insulin Metabolism: A Randomised Parallel Trial

    Get PDF
    From MDPI via Jisc Publications RouterHistory: received 2022-07-22, accepted 2022-08-24, collection 2022-09, epub 2022-09-07Peer reviewed: TrueArticle version: VoRPublication status: PublishedFunder: Liverpool John Moores UniversityHigh carbohydrate, lower fat (HCLF) diets are recommended to reduce cardiometabolic disease (CMD) but low carbohydrate high fat (LCHF) diets can be just as effective. The effect of LCHF on novel insulin resistance biomarkers and the metabolome has not been fully explored. The aim of this study was to investigate the impact of an ad libitum 8-week LCHF diet compared with a HCLF diet on CMD markers, the metabolome, and insulin resistance markers. n = 16 adults were randomly assigned to either LCHF (n = 8, <50 g CHO p/day) or HCLF diet (n = 8) for 8 weeks. At weeks 0, 4 and 8, participants provided fasted blood samples, measures of body composition, blood pressure and dietary intake. Samples were analysed for markers of cardiometabolic disease and underwent non-targeted metabolomic profiling. Both a LCHF and HCLF diet significantly (p < 0.01) improved fasting insulin, HOMA IR, rQUICKI and leptin/adiponectin ratio (p < 0.05) levels. Metabolomic profiling detected 3489 metabolites with 78 metabolites being differentially regulated, for example, an upregulation in lipid metabolites following the LCHF diet may indicate an increase in lipid transport and oxidation, improving insulin sensitivity. In conclusion, both diets may reduce type 2 diabetes risk albeit, a LCHF diet may enhance insulin sensitivity by increasing lipid oxidation

    GPR18 drives FAAH inhibition-induced neuroprotection against HIV-1 Tat-induced neurodegeneration

    Get PDF
    Human immunodeficiency virus type 1 (HIV-1) is known to provoke microglial immune responses which likely play a paramount role in the development of chronic neuroinflammatory conditions and neuronal damage related to HIV-1 associated neurocognitive disorders (HAND). In particular, HIV-1 Tat protein is a proinflammatory neurotoxin which predisposes neurons to synaptodendritic injury. Drugs targeting the degradative enzymes of endogenous cannabinoids have shown promise in reducing inflammation with minimal side effects in rodent models. Considering that markers of neuroinflammation can predict the extent of neuronal injury in HAND patients, we evaluated the neurotoxic effect of HIV-1 Tat-exposed microglia following blockade of fatty acid amid hydrolyze (FAAH), a catabolic enzyme responsible for degradation of endocannabinoids, e.g. anandamide (AEA). In the present study, cultured murine microglia were incubated with Tat and/or a FAAH inhibitor (PF3845). After 24 h, cells were imaged for morphological analysis and microglial conditioned media (MCM) was collected. Frontal cortex neuron cultures (DIV 7–11) were then exposed to MCM, and neurotoxicity was assessed via live cell calcium imaging and staining of actin positive dendritic structures. Results demonstrate a strong attenuation of microglial responses to Tat by PF3845 pretreatment, which is indicated by 1) microglial changes in morphology to a less proinflammatory phenotype using fractal analysis, 2) a decrease in release of neurotoxic cytokines/chemokines (MCP-1/CCL2) and matrix metalloproteinases (MMPs; MMP-9) using ELISA/multiplex assays, and 3) enhanced production of endocannabinoids (AEA) using LC/MS/MS. Additionally, PF3845\u27s effects on Tat-induced microglial-mediated neurotoxicity, decreased dysregulation of neuronal intracellular calcium and prevented the loss of actin-positive staining and punctate structure in frontal cortex neuron cultures. Interestingly, these observed neuroprotective effects appeared to be independent of cannabinoid receptor activity (CB1R & CB2R). We found that a purported GPR18 antagonist, CID-85469571, blocked the neuroprotective effects of PF3845 in all experiments. Collectively, these experiments increase understanding of the role of FAAH inhibition and Tat in mediating microglial neurotoxicity in the HAND condition

    Resolvin E1 Derived from Eicosapentaenoic Acid Prevents Hyperinsulinemia and Hyperglycemia in a Host Genetic Manner

    Get PDF
    The FASEB Journal published by Wiley Periodicals LLC on behalf of Federation of American Societies for Experimental Biology Eicosapentaenoic acid (EPA) has garnered attention after the success of the REDUCE-IT trial, which contradicted previous conclusions on EPA for cardiovascular disease risk. Here we first investigated EPA\u27s preventative role on hyperglycemia and hyperinsulinemia. EPA ethyl esters prevented obesity-induced glucose intolerance, hyperinsulinemia, and hyperglycemia in C57BL/6J mice. Supporting NHANES analyses showed that fasting glucose levels of obese adults were inversely related to EPA intake. We next investigated how EPA improved murine hyperinsulinemia and hyperglycemia. EPA overturned the obesity-driven decrement in the concentration of 18-hydroxyeicosapentaenoic acid (18-HEPE) in white adipose tissue and liver. Treatment of obese inbred mice with RvE1, the downstream immunoresolvant metabolite of 18-HEPE, but not 18-HEPE itself, reversed hyperinsulinemia and hyperglycemia through the G-protein coupled receptor ERV1/ChemR23. To translate the findings, we determined if the effects of RvE1 were dependent on host genetics. RvE1\u27s effects on hyperinsulinemia and hyperglycemia were divergent in diversity outbred mice that model human genetic variation. Secondary SNP analyses further confirmed extensive genetic variation in human RvE1/EPA-metabolizing genes. Collectively, the data suggest EPA prevents hyperinsulinemia and hyperglycemia, in part, through RvE1\u27s activation of ERV1/ChemR23 in a host genetic manner. The studies underscore the need for personalized administration of RvE1 based on genetic/metabolic enzyme profiles

    Alterations in the human lung proteome with lipopolysaccharide

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recombinant human activated protein C (rhAPC) is associated with improved survival in high-risk patients with severe sepsis; however, the effects of both lipopolysaccharide (LPS) and rhAPC on the bronchoalveolar lavage fluid (BALF) proteome are unknown.</p> <p>Methods</p> <p>Using differential in gel electrophoresis (DIGE) we identified changes in the BALF proteome from 10 healthy volunteers given intrapulmonary LPS in one lobe and saline in another lobe. Subjects were randomized to pretreatment with saline or rhAPC.</p> <p>Results</p> <p>An average of 255 protein spots were detected in each proteome. We found 31 spots corresponding to 8 proteins that displayed abundance increased or decreased at least 2-fold after LPS. Proteins that decreased after LPS included surfactant protein A, immunoglobulin J chain, fibrinogen-γ, α<sub>1</sub>-antitrypsin, immunoglobulin, and α<sub>2</sub>-HS-glycoprotein. Haptoglobin increased after LPS-treatment. Treatment with rhAPC was associated with a larger relative decrease in immunoglobulin J chain, fibrinogen-γ, α<sub>1</sub>-antitrypsin, and α<sub>2</sub>-HS-glycoprotein.</p> <p>Conclusion</p> <p>Intrapulmonary LPS was associated with specific protein changes suggesting that the lung response to LPS is more than just a loss of integrity in the alveolar epithelial barrier; however, pretreatment with rhAPC resulted in minor changes in relative BALF protein abundance consistent with its lack of affect in ALI and milder forms of sepsis.</p

    Perspective:Dietary Biomarkers of Intake and Exposure - Exploration with Omics Approaches

    Get PDF
    While conventional nutrition research has yielded biomarkers such as doubly labeled water for energy metabolism and 24-h urinary nitrogen for protein intake, a critical need exists for additional, equally robust biomarkers that allow for objective assessment of specific food intake and dietary exposure. Recent advances in high-throughput MS combined with improved metabolomics techniques and bioinformatic tools provide new opportunities for dietary biomarker development. In September 2018, the NIH organized a 2-d workshop to engage nutrition and omics researchers and explore the potential of multiomics approaches in nutritional biomarker research. The current Perspective summarizes key gaps and challenges identified, as well as the recommendations from the workshop that could serve as a guide for scientists interested in dietary biomarkers research. Topics addressed included study designs for biomarker development, analytical and bioinformatic considerations, and integration of dietary biomarkers with other omics techniques. Several clear needs were identified, including larger controlled feeding studies, testing a variety of foods and dietary patterns across diverse populations, improved reporting standards to support study replication, more chemical standards covering a broader range of food constituents and human metabolites, standardized approaches for biomarker validation, comprehensive and accessible food composition databases, a common ontology for dietary biomarker literature, and methodologic work on statistical procedures for intake biomarker discovery. Multidisciplinary research teams with appropriate expertise are critical to moving forward the field of dietary biomarkers and producing robust, reproducible biomarkers that can be used in public health and clinical research

    Protein Structure Characterization with Mass Spectrometry

    No full text
    Abstract. Mass spectrometry is now commonly being used to determine both the primary and higher order structures of proteins. The basis for these investigations lies in the ability of mass analysis techniques to detect changes in protein conformation under differing conditions. These experiments can be conducted on proteins alone (with no modifying substance present) or in combination with proteolytic digestion or chemical modification. In addition to primary structure determination, proteases and chemical modification have long been used as probes of higher order structure, an approach that has been recently rejuvenated with the emergence of highly sensitive and accurate mass analysis techniques. Here, we review the application of proteases as probes of native structure and illustrate key concepts in the combined use of proteolysis, chemical modification, and mass spectrometry. For example, protein mass maps have been used to probe the structure of a protein/protein complex in solution (cell cycle regulatory proteins, p21 and Cdk2). This approach was also used to study the protein/protein complexes that comprise viral capsids, including those of the common cold virus where, in addition to structural information, protein mass mapping revealed mobile features of the viral proteins. Protein mass mapping clearly has broad utility in protein identification and profiling, yet its accuracy and sensitivity is also allowing for further exploration of protein structure and even structural dynamics
    • …
    corecore