38 research outputs found

    Studies on retina-specific gene expression

    Get PDF

    Microscale Thermophoresis as a Screening Tool to Predict Melanin Binding of Drugs

    Get PDF
    Interactions between drugs and melanin pigment may have major impacts on pharmacokinetics. Therefore, melanin binding can modify the efficacy and toxicity of medications in ophthalmic and other disease of pigmented tissues, such as melanoma. As melanin is present in many pigmented tissues in the human body, investigation of pigment binding is relevant in drug discovery and development. Conventionally, melanin binding assays have been performed using an equilibrium binding study followed by chemical analytics, such as LC/MS. This approach is laborious, relatively slow, and limited to facilities with high performance quantitation instrumentation. We present here a screening of melanin binding with label-free microscale thermophoresis (MST) that utilizes the natural autofluorescence of melanin. We determined equilibrium dissociation constants (Kd) of 11 model compounds with melanin nanoparticles. MST categorized the compounds into extreme (chloroquine, penicillin G), high (papaverine, levofloxacin, terazosin), intermediate (timolol, nadolol, quinidine, propranolol), and low melanin binders (atropine, methotrexate, diclofenac) and displayed good correlation with binding parameter values obtained with the conventional binding study and LC/MS analytics. Further, correlation was seen between predicted melanin binding in human retinal pigment epithelium and choroid (RPE-choroid) and Kd values obtained with MST. This method represents a useful and fast approach for classification of compounds regarding melanin binding. Thus, the method can be utilized in various fields, including drug discovery, pharmacokinetics, and toxicology

    Microscale Thermophoresis as a Screening Tool to Predict Melanin Binding of Drugs

    Get PDF
    Interactions between drugs and melanin pigment may have major impacts on pharmacokinetics. Therefore, melanin binding can modify the efficacy and toxicity of medications in ophthalmic and other disease of pigmented tissues, such as melanoma. As melanin is present in many pigmented tissues in the human body, investigation of pigment binding is relevant in drug discovery and development. Conventionally, melanin binding assays have been performed using an equilibrium binding study followed by chemical analytics, such as LC/MS. This approach is laborious, relatively slow, and limited to facilities with high performance quantitation instrumentation. We present here a screening of melanin binding with label-free microscale thermophoresis (MST) that utilizes the natural autofluorescence of melanin. We determined equilibrium dissociation constants (Kd) of 11 model compounds with melanin nanoparticles. MST categorized the compounds into extreme (chloroquine, penicillin G), high (papaverine, levofloxacin, terazosin), intermediate (timolol, nadolol, quinidine, propranolol), and low melanin binders (atropine, methotrexate, diclofenac) and displayed good correlation with binding parameter values obtained with the conventional binding study and LC/MS analytics. Further, correlation was seen between predicted melanin binding in human retinal pigment epithelium and choroid (RPE-choroid) and Kd values obtained with MST. This method represents a useful and fast approach for classification of compounds regarding melanin binding. Thus, the method can be utilized in various fields, including drug discovery, pharmacokinetics, and toxicology

    Mechanisms of cellular retention of melanin bound drugs : Experiments and computational modeling

    Get PDF
    Melanin binding of drugs is known to increase drug concentrations and retention in pigmented eye tissues. Even though the correlation between melanin binding in vitro and exposure to pigmented eye in vivo has been shown, there is a discrepancy between rapid drug release from melanin particles in vitro and the long in vivo retention in the pigmented tissues. We investigated mechanisms and kinetics of pigment-related drug retention experimentally using isolated melanin particles from porcine retinal pigment epithelium and choroid, isolated porcine eye melanosomes, and re-pigmented ARPE-19 cells in a dynamic flow system. The experimental studies were supplemented with kinetic simulations. Affinity and capacity of levofloxacin, terazosin, papaverine, and timolol binding to melanin revealed Kd values of asymptotic to 50-150 mu M and B-max asymptotic to 40-112 nmol.mg(-1). The drugs were released from melanin in < 1 h (timolol) or in 6-12 h (other drugs). The drugs were released slower from the melanosomes than from melanin; the experimental differences ranged from 1.2-fold (papaverine) to 7.4-fold (timolol). Kinetic simulations supported the role of the melanosomal membrane in slowing down the release of melanin binders. In release studies from the pigmented ARPE-19 cells, drugs were released from the cellular melanin to the extra -cellular space in asymptotic to 1 day (timolol) and asymptotic to 11 days (levofloxacin), i.e., much slower than the release from melanin or melanosomes. Simulations of drug release from pigmented cells in the flow system matched the experimental data and enabled further sensitivity analyses. The simulations demonstrated a significant prolongation of drug retention in the cells as a function of decreasing drug permeability in the melanosomal membranes and increasing melanin content in the cells. Overall, we report the impact of cellular factors in prolonging drug retention and release from melanin-containing cells. These data and simulations will facilitate the design of melanin binding drugs with prolonged ocular actions.Peer reviewe

    Retinal Pigment Epithelial Cell Line with Fast Differentiation and Improved Barrier Properties

    Get PDF
    Retraction published on 14 March 2022, see Pharmaceutics 2022, 14(3), 635. https://doi.org/10.3390/pharmaceutics14030635Retinal pigment epithelium (RPE) acts as an outer blood-retinal barrier that limits the access of circulating xenobiotics to the eye. In addition, the RPE limits posterior elimination of intravitreally injected drugs to circulation. Thus, permeation in the RPE has a significant effect on ocular pharmacokinetics. The RPE is also a potentially important drug target in age-related macular degeneration. Therefore, the cell models of the RPE are important tools in ocular drug development, but poor availability and problems in reproducibility limit the use of primary RPE cell cultures. Furthermore, the best and widely used human cell line ARPE19 requires specialized culture conditions and a long time for cellular differentiation. In this paper, we describe a cell population arisen from the ARPE19 culture, with fast differentiation and improved barrier properties. This cell line, LEPI, forms clear microvilli and rapidly displays RPE-like cobblestone morphology after subculture in simple culture conditions. The LEPI cells show RPE-specific functions and expression of RPE65, ezrin, and BEST1 proteins. On filter, the LEPI cells develop tighter barrier than the ex vivo bovine RPE-choroid: permeability coefficients of beta-blockers (atenolol, nadolol, timolol, pindolol, metoprolol, betaxolol) ranged from 0.4 x 10(-6 )cm/sec to 2.3 x 10(-6) cm/sec depending on the drug lipophilicity. This rapidly differentiating cell line will be an asset in ocular studies since it is easily maintained, it grows and differentiates quickly and does not require specialized culture conditions for differentiation. Thus, this cell line is suitable for both small scale assays and high throughput screening in drug discovery and development.Peer reviewe

    Isolation of Intact and Functional Melanosomes from the Retinal Pigment Epithelium

    Get PDF
    Melanosomes of retinal pigment epithelium (RPE) have many vision supporting functions. Melanosome research would benefit from a method to isolate pure and characterized melanosomes. Sucrose gradient centrifugation is the most commonly used method for isolation of RPE melanosomes, but the isolated products are insufficiently characterized and their quality is unclear. Here we introduce a new gentle method for fractionation of porcine RPE that produces intact functional melanosomes with minimal cross-contamination from other cell organelles. The characterization of isolated organelles was conducted with several methods confirming the purity of the isolated melanosomal fraction (transmission electron microscopy, immunoblotting) and presence of the melanosomal membrane (fluorescence staining of melanosomal membrane, zeta potential measurement). We demonstrate that our isolation method produces RPE melanosomes with the ability to generate free phosphate (Pi) from ATP thereby proving that many membrane proteins remain functional after isolation. The isolated porcine RPE melanosomes represented V-type H(+)ATPase activity that was demonstrated with bafilomycin A1, a specific V-ATPase inhibitor. We anticipate that the isolation method described here can easily be optimized for the isolation of stage IV melanosomes from other pigmented cell types and tissues.Peer reviewe

    Characterization of artificially re-pigmented ARPE-19 retinal pigment epithelial cell model

    Get PDF
    Melanin pigment has a significant role in ocular pharmacokinetics, because many drugs bind at high extent to melanin in the retinal pigment epithelial cells. Most retinal pigment epithelial cell lines lack pigmentation and, therefore, we re-pigmented human ARPE-19 cells to generate a pigmented cell model. Melanosomes from porcine retinal pigment epithelium were isolated and co-incubated with ARPE-19 cells that spontaneously phagocytosed the melanosomes. Internalized melanosomes were functionally integrated to the cellular system as evidenced by correct translocation of cellular Rab27a protein to the melanosomal membranes. The pigmentation was retained during cell cultivation and the level of pigmentation can be controlled by altering the amount of administered melanosomes. We used these cells to study melanosomal uptake of six drugs. The uptake was negligible with low melanin-binders (methotrexate, diclofenac) whereas most of the high melanin-binders (propranolol, chloroquine) were extensively taken up by the melanosomes. This cell line can be used to model pigmentation of the retinal pigment epithelium, while maintaining the beneficial cell line characteristics, such as fast generation of cultures, low cost, long-term maintenance and good reproducibility. The model enables studies at normal and decreased levels of pigmentation to model different retinal conditions.Peer reviewe

    Ocular metabolism and distribution of drugs in the rabbit eye : Quantitative assessment after intracameral and intravitreal administrations

    Get PDF
    Quantitation of ocular drug metabolism is important, but only sparse data is currently available. Herein, the pharmacokinetics of four drugs, substrates of metabolizing enzymes, was investigated in albino rabbit eyes after intracameral and intravitreal administrations. Acetaminophen, brimonidine, cefuroxime axetil, and sunitinib and their corresponding metabolites were quantitated in the cornea, iris-ciliary body, aqueous humor, lens, vitreous humor, and neural retina with LC-MS/MS analytics. Non-compartmental analysis was employed to estimate the pharmacokinetic parameters of the parent drugs and metabolites. The area under the curve (AUC) values of metabolites were 12-70 times lower than the AUC values of the parent drugs in the tissues with the highest enzymatic activity. The ester prodrug cefuroxime axetil was an exception because it was efficiently and quantitatively converted to cefuroxime in the ocular tissues. In contrast to the liver, sulfotransferases, aldehyde oxidase, and cytochrome P450 3A activities were low in the eye and they had negligible impact on ocular drug clearance. With the exception of esterase substrates, metabolism seems to be a minor player in ocular pharmacokinetics. However, metabolites might contribute to ocular toxicity, and drug metabolism in various eye tissues should be investigated and understood thoroughly.Peer reviewe

    Ocular intracameral pharmacokinetics for a cocktail of timolol, betaxolol and atenolol in rabbits

    Get PDF
    The mechanisms of drug clearance from the aqueous humor are poorly defined. In this study, a cocktail approach was used to simultaneously determine the pharmacokinetics of three β-blocker agents after intracameral (ic) injection into the rabbit eyes. Aqueous humor samples were collected and analyzed using LC–MS/MS to determine drug concentrations. Pharmacokinetic parameters were obtained using a compartmental fitting approach, and the estimated clearance, volume of distribution, and half-life values were the following: atenolol (6.44 μL/min, 687 μL, and 73.87 min), timolol (19.30 μL/min, 937 μL, and 33.64 min), and betaxolol (32.20 μL/min, 1421 μL, and 30.58 min). Increased compound lipophilicity (atenolol < timolol < betaxolol) resulted in higher clearance and volume of distributions in the aqueous humor. Clearance of timolol and betaxolol is about 10 times higher than the aqueous humor outflow, demonstrating the importance of other elimination routes (e.g., uptake to iris and ciliary body and subsequent elimination via blood flow)
    corecore