19 research outputs found

    Genes Suggest Ancestral Colour Polymorphisms Are Shared across Morphologically Cryptic Species in Arctic Bumblebees

    Get PDF
    email Suzanne orcd idCopyright: © 2015 Williams et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    From Africa to Europe and back: refugia and range shifts cause high genetic differentiation in the Marbled White butterfly Melanargia galathea

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The glacial-interglacial oscillations caused severe range modifications of biota. Thermophilic species became extinct in the North and survived in southern retreats, e.g. the Mediterranean Basin. These repeated extinction and (re)colonisation events led to long-term isolation and intermixing of populations and thus resulted in strong genetic imprints in many European species therefore being composed of several genetic lineages. To better understand these cycles of repeated expansion and retraction, we selected the Marbled White butterfly <it>Melanargia galathea</it>. Fourty-one populations scattered over Europe and the Maghreb and one population of the sibling taxon <it>M. lachesis </it>were analysed using allozyme electrophoresis.</p> <p>Results</p> <p>We obtained seven distinct lineages applying neighbour joining and STRUCTURE analyses: (i) Morocco, (ii) Tunisia, (iii) Sicily, (iv) Italy and southern France, (v) eastern Balkans extending to Central Europe, (vi) western Balkans with western Carpathian Basin as well as (vii) south-western Alps. The hierarchy of these splits is well matching the chronology of glacial and interglacial cycles since the GĂŒnz ice age starting with an initial split between the <it>galathea </it>group in North Africa and the <it>lachesis </it>group in Iberia. These genetic structures were compared with past distribution patterns during the last glacial stage calculated with distribution models.</p> <p>Conclusions</p> <p>Both methods suggest climatically suitable areas in the Maghreb and the southern European peninsulas with distinct refugia during the last glacial period and underpin strong range expansions to the North during the Postglacial. However, the allozyme patterns reveal biogeographical structures not detected by distribution modelling as two distinct refugia in the Maghreb, two or more distinct refugia at the Balkans and a close link between the eastern Maghreb and Sicily. Furthermore, the genetically highly diverse western Maghreb might have acted as source or speciation centre of this taxon, while the eastern, genetically impoverished Maghreb population might result from a relatively recent recolonisation from Europe via Sicily.</p

    High-resolution distribution of bumblebees (<i>Bombus</i> spp.) in a mountain area marked by agricultural decline

    No full text
    <p>Since the 1980s, bumblebee species have declined in Europe, partly because of agricultural intensification. Yet little is known about the potential consequences of agricultural decline on bumblebees. In most mountainous areas, agricultural decline from rural exodus is acute and alters landscapes as much as intensive farming. Our study aims at providing a quantitative assessment of agricultural decline through its impact on landscapes, and at characterising bumblebee assemblages associated with land-use types of mountain regions. The studied area (6.2 km<sup>2</sup>) belongs to the Eyne’s valley in the French Pyrenees, known to host the exceptional number of 33 bumblebee species of the 45 found in continental France. We compare aerial photographs from 1953 and 2000 to quantify agricultural decline. We cross a bumblebee database (2849 observations) with land-use types interpreted from aerial photographs from 2000. Comparison of land-use maps from 1953 and 2000 reveals a strong progression of woodland and urbanised areas, and a decline of agricultural land (pastures and crops), except for hayfields. Spatial correlations between low altitude agro-pastoral structure and the occurrence of bumblebee species shows that bumblebee specific richness is highest in agro-pastoral land-uses (pastures and hayfields) and in the ski area, and poorest in woodland and urbanised areas. Urbanisation and agricultural decline, through increased woodland areas, could lead to a loss of bumblebee diversity in the future. To preserve high bumblebee richness, it is crucial to design measures to maintain open land habitats and the landscape’s spatial heterogeneity through agro-pastoral practices.</p

    Bibliography

    No full text
    corecore