143 research outputs found

    Irrelevant operators in the two-dimensional Ising model

    Full text link
    By using conformal-field theory, we classify the possible irrelevant operators for the Ising model on the square and triangular lattices. We analyze the existing results for the free energy and its derivatives and for the correlation length, showing that they are in agreement with the conformal-field theory predictions. Moreover, these results imply that the nonlinear scaling field of the energy-momentum tensor vanishes at the critical point. Several other peculiar cancellations are explained in terms of a number of general conjectures. We show that all existing results on the square and triangular lattice are consistent with the assumption that only nonzero spin operators are present.Comment: 32 pages. Added comments and reference

    SU(2)/Z2SU(2)/Z_2 symmetry of the BKT transition and twisted boundary conditio n

    Full text link
    Berezinskii-Kosterlitz-Thouless (BKT) transition, the transition of the 2D sine-Gordon model, plays an important role in the low dimensional physics. We relate the operator content of the BKT transition to that of the SU(2) Wess-Zumino-Witten model, using twisted boundary conditions. With this method, in order to determine the BKT critical point, we can use the level crossing of the lower excitations than the periodic boundary case, thus the convergence to the transition point is highly improved. Then we verify the efficiency of this method by applying to the S=1,2 spin chains.Comment: LaTex2e,, 33 pages, 14 figures in eps file

    Genetic diversity in nutritional parameters in response to drought of Coffea canephora cultivated in Rondonia state, Brazil.

    Get PDF
    Made available in DSpace on 2020-01-21T18:22:55Z (GMT). No. of bitstreams: 1 Starlingetal.2019gmr18300geneticdiversitynutritionalparameters.pdf: 257179 bytes, checksum: 090de818264fe4477a75e474e96ba145 (MD5) Previous issue date: 2019bitstream/item/209280/1/Starling-et-al.-2019-gmr18300-genetic-diversity-nutritional-parameters.pd

    Exact Finite-Size-Scaling Corrections to the Critical Two-Dimensional Ising Model on a Torus. II. Triangular and hexagonal lattices

    Full text link
    We compute the finite-size corrections to the free energy, internal energy and specific heat of the critical two-dimensional spin-1/2 Ising model on a triangular and hexagonal lattices wrapped on a torus. We find the general form of the finite-size corrections to these quantities, as well as explicit formulas for the first coefficients of each expansion. We analyze the implications of these findings on the renormalization-group description of the model.Comment: 45 pages (LaTeX2e). Self-unpacking file containing the tex file and three macros (indent.sty, eqsection.sty, subeqnarray.sty). Paper I corresponds to cond-mat/0009054. Final versio

    Tricritical Behavior in the Extended Hubbard Chains

    Full text link
    Phase diagrams of the one-dimensional extended Hubbard model (including nearest-neighbor interaction VV) at half- and quarter-filling are studied by observing level crossings of excitation spectra using the exact diagonalization. This method is based on the Tomonaga-Luttinger liquid theory including logarithmic corrections which stem from the renormalization of the Umklapp- and the backward-scattering effects. Using this approach, the phase boundaries are determined with high accuracy, and then the structure of the phase diagram is clarified. At half-filling, the phase diagram consists of two Berezinskii-Kosterlitz-Thouless (BKT) transition lines and one Gaussian transition line in the charge sector, and one spin-gap transition line. This structure reflects the U(1) \otimes SU(2) symmetry of the electron system. Near the U=2VU=2V line, the Gaussian and the spin-gap transitions take place independently from the weak- to the intermediate-coupling region, but these two transition lines are coupled in the strong-coupling region. This result demonstrates existence of a tricritical point and a bond-charge-density-wave (BCDW) phase between charge- and spin-density-wave (CDW, SDW) phases. To clarify this mechanism of the transition, we also investigate effect of a correlated hopping term which plays a role to enlarge BCDW and bond-spin-density-wave (BSDW) phases. At quarter-filling, a similar crossover phenomenon also takes place in the large-VV region involving spin-gap and BKT-type metal-insulator transitions.Comment: 18 pages(REVTeX), 17 figures(EPS(color)), 3 tables, Detailed paper of JPSJ 68 (1999) 3123 (cond-mat/9903227), see also cond-mat/000341

    Spin-Gap Phases in Tomonaga-Luttinger Liquids

    Full text link
    We give the details of the analysis for critical properties of spin-gap phases in one-dimensional lattice electron models. In the Tomonaga-Luttinger (TL) liquid theory, the spin-gap instability occurs when the backward scattering changes from repulsive to attractive. This transition point is shown to be equivalent to that of the level-crossing of the singlet and the triplet excitation spectra, using the c=1 conformal field theory and the renormalization group. Based on this notion, the transition point between the TL liquid and the spin-gap phases can be determined with high-accuracy from the numerical data of finite-size clusters. We also discuss the boundary conditions and discrete symmetries to extract these excitation spectra. This technique is applied to the extended Hubbard model, the t-J model, and the t-J-J' model, and their phase diagrams are obtained. We also discuss the relation between our results and analytical solutions in weak-coupling and low-density limits.Comment: 14 pages(REVTeX), 9 figures(EPS), 1 table, To appear in PRB, Detailed paper of PRL 79 (1997) 3214 and JPSJ 67 (1998) 71
    corecore