3,196 research outputs found

    Political institutions and debt crises

    Get PDF
    This paper shows that political institutions matter in explaining defaults on external and domestic debt obligations. We explore a large number of political and macroeconomic variables using a non-parametric technique to predict safety from default. The advantage of this technique is that it is able to identify patterns in the data that are not captured in standard probit analysis. We find that political factors matter, and do so in different ways for democratic and non-democratic regimes, and for domestic and external debt. In democracies, a parliamentary system or sufficient checks and balances almost guarantee the absence of default on external debt when economic fundamentals or liquidity are sufficiently strong. In dictatorships, high stability and tenure play a similar role for default on domestic debt

    Vacuum Spacetimes with Future Trapped Surfaces

    Full text link
    In this article we show that one can construct initial data for the Einstein equations which satisfy the vacuum constraints. This initial data is defined on a manifold with topology R3R^3 with a regular center and is asymptotically flat. Further, this initial data will contain an annular region which is foliated by two-surfaces of topology S2S^2. These two-surfaces are future trapped in the language of Penrose. The Penrose singularity theorem guarantees that the vacuum spacetime which evolves from this initial data is future null incomplete.Comment: 19 page

    Late time behaviour of the maximal slicing of the Schwarzschild black hole

    Get PDF
    A time-symmetric Cauchy slice of the extended Schwarzschild spacetime can be evolved into a foliation of the r>3m/2r>3m/2-region of the spacetime by maximal surfaces with the requirement that time runs equally fast at both spatial ends of the manifold. This paper studies the behaviour of these slices in the limit as proper time-at-infinity becomes arbitrarily large and gives an analytic expression for the collapse of the lapse.Comment: 18 pages, Latex, no figure

    Capacity Value of Solar Power: Report of the IEEE PES Task Force on Capacity Value of Solar Power

    Get PDF
    This paper reviews methods used for adequacy risk assessment considering solar power, and for assessment of the capacity value of solar power. The properties of solar power are described as seen from the perspective of the balancing authority, comparing differences in energy availability and capacity factors with those of wind. Methodology for risk calculations considering variable generation (VG) are then surveyed, including the probability background, statistical estimation approaches, and capacity value metrics. Issues in incorporating VG in capacity markets are described, followed by a review of applied studies considering solar power. Finally, recommendations for further research will be presented

    Some Curvature Problems in Semi-Riemannian Geometry

    Get PDF
    In this survey article we review several results on the curvature of semi-Riemannian metrics which are motivated by the positive mass theorem. The main themes are estimates of the Riemann tensor of an asymptotically flat manifold and the construction of Lorentzian metrics which satisfy the dominant energy condition.Comment: 25 pages, LaTeX, 4 figure

    Long term stable integration of a maximally sliced Schwarzschild black hole using a smooth lattice method

    Get PDF
    We will present results of a numerical integration of a maximally sliced Schwarzschild black hole using a smooth lattice method. The results show no signs of any instability forming during the evolutions to t=1000m. The principle features of our method are i) the use of a lattice to record the geometry, ii) the use of local Riemann normal coordinates to apply the 1+1 ADM equations to the lattice and iii) the use of the Bianchi identities to assist in the computation of the curvatures. No other special techniques are used. The evolution is unconstrained and the ADM equations are used in their standard form.Comment: 47 pages including 26 figures, plain TeX, also available at http://www.maths.monash.edu.au/~leo/preprint

    Force balance and membrane shedding at the Red Blood Cell surface

    Full text link
    During the aging of the red-blood cell, or under conditions of extreme echinocytosis, membrane is shed from the cell plasma membrane in the form of nano-vesicles. We propose that this process is the result of the self-adaptation of the membrane surface area to the elastic stress imposed by the spectrin cytoskeleton, via the local buckling of membrane under increasing cytoskeleton stiffness. This model introduces the concept of force balance as a regulatory process at the cell membrane, and quantitatively reproduces the rate of area loss in aging red-blood cells.Comment: 4 pages, 3 figure

    An Application of Physical Flexibility and Software Reconfigurability for the Automation of Battery Module Assembly

    Get PDF
    Batteries are a strategic technology to decarbonize conventional automotive powertrains and enable energy policy turnaround from fossil fuels to renewable energy. The demand for battery packs is rising, but they remain unable to compete with conventional technologies, primarily due to higher costs. Major sources of cost remain in manufacturing and assembly. These costs can be attributed to a need for high product quality, material handling complexity, uncertain and fluctuating production volumes, and an unpredictable breadth of product variants. This research paper applies the paradigms of flexibility from a mechanical engineering perspective, and reconfigurability from a software perspective to form a holistic, integrated manufacturing solution to better realize product variants. This allows manufacturers to de-risk investment as there is increased confidence that a facility can meet new requirements with reduced effort, and also shows how part of the vision of Industry 4.0 associated with the integration and exploitation of data can be fulfilled. A functional decomposition of battery packs is used to develop a foundational understanding of how changes in customer requirements can result in physical product changes. A Product, Process, and Resource (PPR) methodology is employed to link physical product characteristics to physical and logical characteristics of resources. This mapping is leveraged to enable the design of a gripper with focused flexibility by the Institute for Machine Tools and Industrial Management (iwb) at the Technical University of Munich, as it is acknowledged that mechanical changes are challenging to realize within industrial manufacturing facilities. Reconfigurability is realised through exploitation of data integration across the PPR domains, through the extension of the capabilities of a non-commercial virtual engineering toolset developed by the Automation Systems Group at the University of Warwick. The work shows an “end-to-end” approach that practically demonstrates the application of the flexibility and reconfigurability paradigms within an industrial engineering context
    corecore