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Abstract—This paper reviews methods used for adequacy risk 

assessment considering solar power, and for assessment of the 

capacity value of solar power. Topics covered are the properties 

of solar power as seen by the system (and how this contrasts with 

wind), methodology for risk calculation considering variable 

generation (VG), issues in incorporating VG in capacity markets, 

and a review of applied studies considering solar power. Finally, 

recommendations for further research will be presented. 
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I.  INTRODUCTION 

An important issue for power system planning is the 

contribution of renewable energy resources to reliably meeting 

demand. The ability of a generator (or other resource) to help 

reliably serve demand is typically measured by estimating its 

capacity value. Mechanical failures, planned maintenance, or 

lack of generating resource in real-time may leave a system 

with insufficient capacity to meet load—requiring load 

curtailment. The capacity value of a generator is estimated by 

examining the effect that it has on the probabilities of these 

load-curtailment events. The issue of real-time resource 

availability is particularly salient with renewables, as their 

output is governed by uncontrollable climactic conditions. 

The literature contains a number of studies that apply 

capacity value-estimation techniques to wind generators. A 

survey of these techniques by an IEEE Task Force on 

Capacity Value of Wind Power provides the Task Force’s 

view of best practices in conducting capacity value studies of 

wind [1]. This paper is has a similar purpose, in this case 

surveying methods for estimating the capacity value of solar 

power, updating an earlier TF conference paper on solar 

power [2]. In addition to issues specifically associated with 

solar power, material on risk calculation methodology and 

capacity markets which was not discussed in the earlier paper 

will also be presented. In particular, we will discuss issues that 

are similar to those affecting wind power, and to draw special 

attention to some of the issues that are unique to solar power 

(with which the power system community may be less familiar 

than with wind). 

This paper addresses four major issues related to solar 

power. The first, which is discussed in Section II, has to do 

with the properties of solar power. Some issues that are unique 

to solar power include spatial and temporal correlations of 

solar availability and design considerations (e.g., the inclusion 

of a sun-tracking system, energy storage, or orientation of a 

photovoltaic panel) that can affect its capacity contribution. 

Section III provides a more detailed discussion of the 

statistical methods used for adequacy index and capacity value 

estimation in the presence of variable generation – much of 

the methodology in this section applies equally to different 

VG technologies. An important issue is that any statistical 

relationship between solar radiation, demand, and (potentially) 

wind should be captured to produce robust estimates. Another 

topic of interest is using statistical models to determine what 

properties of the solar pattern more directly affect the capacity 

value of solar. These types of insights can provide useful 

screening tools to determine how to design solar systems and 

policies to maximize capacity value. Section IV discusses 

issues around remunerating solar plants for their capacity 

value. These market design issues are by no means new, but 

solar introduces some new complications due to seasonal and 

interannual variability of capacity value. Section V surveys 

recent capacity value studies in the industrial and research 

literature. Finally, Section VI concludes and provides a 

roadmap for future work that this task force intends to do. 

II. PROPERTIES OF SOLAR POWER 

The energy from the sun which is relevant to solar panels is 
called irradiance, with units given as energy per area, or Watts 
per Sq-Meter [W/m

2
]. The measure of irradiance of interest in 

solar power calculations is the Global Horizontal Irradiance 
(GHI), and many models for predicting solar production have 
been evaluated, including models estimating plane of array 
(POA) irradiance based on GHI observations for tilted arrays 
[3]. 

Solar power resources differ from traditional thermal 
resources in that their production of energy is intermittent due 
to the stochastic nature of available fuel from the sun. The 
irradiance available to solar resources can vary considerably 
throughout the day according to cloud cover and haze. 
Temperature, humidity, and wind speed are just a few of the 
other weather conditions which impact solar production [4]. 

A. Solar System Designs 

Solar panels can be arranged in fixed array configurations 
at a constant mounting angle or in array-tracking systems with 
movement allowed in 1 axis or 2 axes. As shown in Fig. 1, axis 
tracking systems tend to produce more energy throughout a 
given day since it is constantly following the angle of the sun 
and maximizing the amount of direct normal irradiance (DNI) 
at all times. Not only does this allow for higher energy 
production value, but will afford the maximum value as a 
capacity resource, elevating power production during peak 
afternoon demand hours common in summer-peaking regions. 



 

Figure 1: Simulated solar energy production with different tracking 

technologies and mounting angles [5].   
 

Photovoltaic (PV) solar technology has no inherent storage 
capability unless coupled with battery technology, thus has 
availability as a capacity resource only during daylight hours. 
Contrary to PV technology, concentrated solar power (CSP) 
uses an array of solar reflectors to heat water to produce steam 
which drives a turbine. There is inherent thermal storage in the 
heated water which allows CSP to produce power during the 
day or night depending on the capacity of the storage [6]. 

B. Aspects different from wind 

The intermittent nature of solar energy production differs in 
many ways from wind energy production. 

1) Geographic Intermittent Resolution: Weather patterns 

can be very localized within a power system, with some 

regions in full sun while others have full cloud cover. Partly 

cloudy days can have sparse cloud cover, and even closely-

spaced solar plants can experience different intermittent power 

production. Hence the geographic correlation is lower since 

the solar energy interruptions across a region occur at a very 

fine geographic resolution. This differs from wind power, 

where wind speed has the characteristic of having stronger 

geographic relationships and the wind power intermittent 

behavior has a more coarse resolution across a region [1]. 

Nonetheless, geographic diversity of solar plant siting remains 

important for less power fluctuations, where a growing fleet of 

solar plants would have less intermittent generation as a whole 

if they are geographically diverse. 

2) Available fuel patterns: Wind energy production has a 

probability of occurring at any time over a 24-hour period, 

though there is typically some variability of availability 

statistics with time of day and year [7]. However solar power 

will only be produced during daylight hours when the sun is 

shining, producing none during the night – this time window 

of possible generation has a predictable start and end time 

from sunrise to sunset as in Figure 2. The daily hours of 

availability change throughout the year based on the 

predictable seasonal angle of the sun, and more hours of solar 

fuel availability are possible during the summer months with 

fewer hours available during the winter months. This diurnal 

pattern also has predictable dependence on geography and 

latitude position, e.g. increased seasonal dependence of 

resource at higher latitudes. Figure 3 illustrates based on 

resource data from Spain how pronounced these daily and 

seasonal cycles in solar resource can be. 

 

 

Figure 2: Solar and Wind production over a two week time period in 

Germany. Shows how daily solar production, though still variable, falls 

within a predictable time window as compared to wind [8]. 

 

 

Figure 3: Monthly mean load factor for different times of day in Spain 

(based on resource data from 2010-13 [9]). 

 

3) Solar Plant variations in capacity factor 
A recent study analyzed what drives performance variation 

among solar PV plants using multivariate regression analysis to 
explain variance in capacity factors as seen by the AC system 
[10]. The three independent variables which explained much of 
the variance included GHI on site - analogous to wind capacity 
factors improving with favorable wind speeds on site - and two 
technology-specific features: the tracking capability, and the 
Inverter Loading Ratio (ILR) or DC-to-AC ratio of the system. 
The tracking capability will boost the GHI falling on the plane 
of array throughout the day as seen in Figure 1, while 
increasing ILR saturation can cause the inverter to operate 
closer to full AC capacity more of the day particularly in the 
morning and afternoon shoulder periods. Wind power has 
different technology-specific design elements to consider for 
improvements in its reliability contribution during peak, such 
as cut-in wind speed and tower hub height [11]. 

III. RISK CALCULATION METHODOLOGY 

This section will outline the general framework used for 

risk-based adequacy and capacity value assessment in systems 

with substantial variable generation (VG) penetration. Most of 

the material is equally applicable to solar, wind and other 

variable renewables, and so unlike other sections of this paper 

it seldom makes specific reference to solar power. 

A. Probability Background 

In adequacy assessment, we are interested in the values of 
conventional generation  𝑋𝑡, variable generation 𝑌𝑡 and demand 



𝐷𝑡  at more than one point 𝑡 in time. Let the (random) vector 
𝑆𝑡 = (𝑋𝑡 , 𝑌𝑡 , 𝐷𝑡) denote the system state at 𝑡 = 1…𝑛 within 
the period under study. The system margin, 𝑍𝑡 = 𝑋𝑡 + 𝑌𝑡 − 𝐷𝑡, 
is then a function of 𝑆𝑡. A full probability model for the system 
would be sequential, describing 𝑆𝑡 as a stochastic process over 
the entire time period – this is needed to calculate some risk 
metrics, e.g. frequency and duration indices, or the distribution 
of total energy unserved within the period under study. 

However, some quantities such as Loss of Load 
Expectation, LOLE = ∑ 𝐏(𝑍𝑡 < 0)𝑛

𝑡=1  are defined in terms of 
the marginal distributions of the 𝑆𝑡, and may be specified in 
terms of a simpler time-collapsed model with a time-
independent state vector 𝑆 = (𝑋, 𝑌, 𝐷) whose distribution is 

specified by 𝐏(𝑆 ∈ 𝐴) =
1

𝑛
∑ 𝐏(𝑆𝑡 ∈ 𝐴)𝑛
𝑡=1  for any event 𝐴. 

LOLE is then specified in terms of a snapshot Loss of Load 
Probability (LOLP) as Δ𝑡𝐏(𝑍 < 0), and Expected Energy 
Unserved (EEU) as Δ𝑡𝐄(max(−𝑍, 0)) where 𝑍 = 𝑋 + 𝑌 − 𝐷 
and Δ𝑡 is the length of the period under study. The distribution 
of 𝑆 may often be estimated from the empirical distribution of 
observations of the 𝑆𝑡 – the time-collapsed model is thus 
almost always, albeit implicitly, used in adequacy studies 
which measure risk using quantities such as LOLE which do 
not require a full sequential model. 

In the use of probabilistic and statistical concepts such as 
independence or correlation, it is essential to be clear as to 
which of the sequential and time collapsed models this refers. 
For example, suppose 𝑌𝑡 is available solar power, that at any 
given time 𝑡 the random variables 𝑌𝑡 and 𝐷𝑡  are independent 
(neither being informative about the other), and {𝑌𝑡} and {𝐷𝑡} 
are independent (but clearly not time-homogeneous) processes. 
Then daily minimum demand usually occurs overnight when it 
is dark, so the lowest 𝐷 are associated with zero 𝑌 – the 
variation with time of the marginal distributions of both 
processes has introduced probabilistic dependence between 
their time-collapsed counterparts 𝑌 and D. 

B. Statistical Estimation 

Most studies using the sequential picture assume that VG 
and demand are independent processes conditional on being in 
the season under study, e.g. [12, 13]. However this is usually 
too strong an assumption without good supporting evidence, as 
VG availability is driven by the weather which in most systems 
also influences on demand. There is little research on joint 
stochastic process modelling of VG and demand for adequacy 
assessment – see [14, 15] for existing early stage work. 

Within the VG integration community, where VG-demand 
dependence is accounted for in the time-collapsed picture this 
is usually through a ‘hindcast’ approach, in which the empirical 
historical distribution of VG-demand pairs (𝑦𝑡 , 𝑑𝑡) is used as 
the predictive joint distribution in the risk calculation. Then for 
instance LOLE ∝ ∑ 𝐏(𝑋𝑡 + 𝑦𝑡 < 𝑑𝑡)𝑡 , where the sum is now 
over historic measurements at times 𝑡. To the best of our 
knowledge, the only work looking at more sophisticated 
modelling of VG-demand relationship in the time collapsed 
picture is [16], which additionally uses temperature as an 
explanatory variable for both wind and demand, and then 
invokes independence of wind and demand conditional on 
temperature, and on time of day/week/year. 

C. Capacity Values and Analytical Results for Special Cases 

It is often useful, either in visualizing the contribution of 
VG within adequacy calculations or, in specific application 
such as capacity markets, to define capacity value metrics [17]. 
Within the time-collapsed picture we can define margin of 
conventional supply over demand 𝑀 = 𝑋 − 𝐷. Then 
commonly used capacity value metrics include Effective Load 
Carrying Capability (ELCC) defined with respect to LOLP by 

𝐏(𝑀 < 0) = 𝑃(𝑀 + 𝑌 < 𝜈𝑌,𝑀
ELCC), and Equivalent Firm 

Capacity (EFC) defined with respect to LOLP by 𝐏(𝑀 + 𝑌 <
0) = 𝑃(𝑀 + 𝜈𝑌,𝑀

EFC < 0). Note that ELCC and EFC are 

determined by both 𝑌 and 𝑀; they depend on both the VG 
capacity 𝑌 and on the background 𝑀 to which it is added. 

Outputs of adequacy models must be evaluated numerically 
unless the input probability distributions have very specific 
forms. On the assumption of independence between 𝑀 and 𝑌, 
there are two significant special cases for which analytical 
results for EFC and ELCC exist – while these are not usually 
necessary for tractability, they are valuable in explaining what 
aspects of model inputs determine the results of calculations. 

Suppose that in the relevant region the left tail of the 
distribution of 𝑀 is exponential with decay constant 𝜆, and Y is 
continuous with probability density function (pdf) 𝑓𝑌(𝑦). Then 
adding independent 𝑌 shifts the distribution of 𝑀 by an amount 

−
1

𝜆
ln(∫ d𝑦 𝑓𝑌(𝑦)𝑒

−𝜆𝑦) which is also the EFC and ELCC of 𝑌 

[17]. Less general results were previously published for ELCC 
of a 2-state 𝑌 [18] and multistate discrete 𝑌 [19]. 

The second special case occurs where the variance of 𝑌 is 
small relative to the scale over which the distribution of 𝑀 
decays in its left tail. If 𝑀 has a pdf 𝑓𝑀(𝑚), then ELCC and 

EFC may be approximated as 𝜇𝑌 − [𝑓′
𝑀
(0) 2𝑓𝑀(0)⁄ ]𝜎𝑌

2 [17, 

20] where 𝜇𝑌 and 𝜎𝑌
2 are the mean and variance of 𝑌. This 

confirms some intuitive observations, e.g. ELCC increases with 
the mean of 𝑌 and decreases when variability of 𝑌 increases. 
Notably, if the distribution of 𝑀 shifts so as to increase risk, 
then any increase in the capacity value is due to the form of the 
distribution of 𝑀, not due to any intuitive explanation of 
additional capacity necessarily being of more value when the 
risk level is higher. The special case of small 𝑌 and Gaussian 
𝑀 had previously been published as the ‘z-method’ [21], 
however it is unclear whether this is realistic in practical 
situations, particularly as where a distribution is approximated 
as Gaussian this approximation is usually poorer in the tails 
which are of primary interest here.  

If 𝑀 and 𝑌 are not independent, the same small 𝑌 result 
applies replacing the mean and SD of 𝑌 by the mean and SD 
conditional on being in the critical region 𝑀 = 0. Then in the 
‘hindcast’ approach described in III-B, for very small Y the 
EFC and ELCC are (∑ 𝑦𝑡𝑓𝑋(𝑑𝑡)𝑡 ) (∑ 𝑓𝑋(𝑑𝑡)𝑡 )⁄ , i.e. the mean 
of the historic VG records 𝑦𝑡 , weighted by the pdf of 𝑋 at the 
corresponding demand record, 𝑓𝑋(𝑑𝑡). This specifies how, if 
weighted mean available VG capacity is used to approximate a 
full capacity value calculation, this should be done – this is in 
contrast to the more common approach of using the cumulative 
distribution function (or equivalently the LOLP) as the 
weighting function as in e.g. [22] for solar power. More 



broadly, these ‘small 𝑌’ results provide a basis for identifying 
when output means might be expected to provide a suitable 
proxy for risk-based methods of assessing capacity values, e.g. 
that the capacity value of 𝑌 may exceed 𝑌’s unconditional 
mean if demand is driven by the need for air conditioning on 
days and at times of the day when solar power is abundant. 

IV. CAPACITY MARKETS 

Many energy markets are considering, or have 
implemented, remuneration mechanisms that compensate 
generators for the capacity they provide to the market, over and 
above energy supplied. The arguments behind capacity markets 
are discussed in the literature [23-25].  Particular challenges 
arise when considering variable generation e.g., solar and wind.  

Independence:  The first major difference between VG and 
conventional generation is that available capacity from a VG 
unit may not be independent of that from other units or load.  
The risk calculations that underpin most capacity mechanisms 
use a standard model of thermal generation in which each 
unit’s available capacity is independent of other units – this is 
in contrast to solar units for which available capacity is 
dependent on weather patterns that correlate units locally and 
regionally. Weather patterns also influence load, resulting in 
possible correlation with VG availability. Capacity market 
designs must properly account for any load-solar relationship 
and also any wind-solar relationship on a regional and system 
aggregate basis. 

Design:  Solar panel design can optimize either annual energy 

or peak demand.  There are many design options when 

constructing solar panels, including the direction the panel is 

facing, the angle relative to vertical, and whether tracking is 

included as detailed in Section II.  Table 1 [26] shows data for 

Los Angeles with several fixed panel design options, each 

resulting in very different production levels.  If market 

incentives only reward energy production, maximizing total 

system benefits is not likely optimized.  Additionally, if 

market incentives are provided based on all system solar 

installations (e.g. ERCOT and IESO) instead of recognizing 

individual unit contributions then individual producers are not 

appropriately incentivized to maximize system benefits.  Solar 

design options should be accounted for in deciding the relative 

rewards to facilities with different tradeoffs between regional 

and system capacity and energy optimum (e.g. as in MISO 

[27] for wind and CAISO [28] for solar). 

 

 
Table 1. CAISO solar performance data. 

Temporal:  Capacity contributions for solar can vary greatly 

from year to year, especially when the highest demand is in 

the summer.  High electricity demand is strongly correlated 

with temperature in summer months.  High temperatures can 

reduce solar panel performance and output [29].  Additionally, 

depending on the month and time of day that the high demand 

occurs, the solar resource can vary significantly. For CAISO it 

can be over 30% of installed solar capacity[30]. In 2013, 

CAISO had its peak demand in June while in 2014 it was in 

September [31].  History for the last 20 years shows this 

variation of peak loads from June to September, and from hour 

14:30 to 16:53.  Markets that rely on singular seasonal 

capacity valuations miss the monthly variation and can over or 

under value the capacity contribution.  Improvements can be 

achieved by utilizing a monthly rating approach or a risk 

based seasonal method. 

Diminishing Returns:  Similar to wind [17, 32], as more solar 

capacity is installed on a system its calculated capacity value 

as a percentage of nameplate decreases very substantially, in 

contrast to thermal generation – this arises from the lack of 

independence discussed in Section III, and the consequent 

possibility of very low output across a whole system.  As 

marginal capacity benefits decrease with new solar additions, 

a market design must decide whether the capacity payment to 

existing solar installations is diminished as a result of the new 

installation (equal value to all), or if the capacity payment 

should be lower for new installations based on the marginal 

system capacity benefit that they provide.  Equal capacity 

payments can result in new facilities being over-paid with 

respect to the system benefits provided, which may 

overstimulate new development. 

Subsidies:  Subsidies for renewable generation, whereby 

renewable generators receive extra revenue (or tax credits) 

and/or preferential market treatment by virtue of the fact that 

they are renewable generators (such as through renewable 

standards), interfere with market design as is the case when 

any externality is not internalized to the market.  Regardless of 

whether a renewable subsidy is offered based on investment or 

production, it can distort incentives contrary to the 

requirements of a market.  For example, a production tax 

credit incentivizes maximum production without consideration 

of peak demand requirements.  One approach that is used in 

the UK is to disallow subsidized technologies from 

participating directly in capacity markets, although the 

impacts of renewable generation should be reflected in lower 

established capacity requirements.  This prevents subsidized 

technologies from earning excess profits but may not result in 

optimally designed solar facilities according to the rationale 

stated above.  Improvements to markets can be achieved by 

setting clear rules and values on required market products to 

minimize development risk and then modifying subsidies if 

they are necessary to meet other policy goals, such as carbon 

reduction and/or security of supply.  The effects of pre-

existing subsidies will still remain a challenge. 

Most markets use some form of historical renewable 
performance data in defining the capacity value for subsequent 
years. Although basing renewable capacity values on 
historical average performance stabilizes revenues to 
renewable facilities, it does not address system security 
impacts from year-to-year performance variability unless 
reserves are increased to account for the increased risk.  
Several markets (e.g. PJM) have developed capacity 
performance standards for non-renewable generators that 

Los Angeles - Average Solar Insolation (kWh/m2/day) with panel facing south

June July August September

Flat Surface (90° angle) 7.83 7.54 6.87 5.70

Optimal Year Round (56° angle) 6.80 6.69 6.67 6.40

Summer Performance (71°angle) 7.50 7.31 6.99 6.31



include penalties for underperformance.  Similar standards 
that hold renewable facilities accountable for declared 
capacity are appropriate to shift performance risk to the 
generator from load and motivate improved design and facility 
maintenance.  Additionally, risk studies should be conducted 
to adjust reserves based on increased system variability. 

Any market mechanism should ideally be technologically-
neutral, i.e. would apply to all generators on the same terms yet 
there are differing risk and uncertainties related to each 
technology.  Due to differences introduced by VG, it is 
necessary to consider a broader range of factors and conduct 
additional analysis to more accurately determine the system 
benefits that the VG technology provides.  Placing 
performance risk on each technology may be the most equal 
determination that a capacity market can provide. 

V. ADEQUACY STUDIES CONSIDERING SOLAR POWER 

A. Summary of Previous Task Force Paper 

While the risk calculation structure is essentially the same 

for solar as for other renewable technologies, the previous 

review [2] found that a wider range of capacity value metrics 

beyond risk-based ELCC or EFC have been used for solar 

compared to wind. In addition to peak-period capacity factor 

approaches, these included reduction of peak net demand (i.e. 

demand minus solar) in a historic series, and metrics 

representing the amount of storage or demand response which 

mitigates the variability of the solar power.  

B. Methods Underpinning Capacity Mechanisms 

Mills and Wiser in a 2012 LBNL report [33] survey solar 

capacity value approaches in a number of different utility 

resource planning studies. They note that only Arizona Public 

Service (APS) and Public Service of Colorado (PSCo) use risk 

based capacity values in evaluating solar’s contribution. More 

recent utility studies using risk-based approaches include 

XCEL Minnesota [34] (using risk-based ELCC), XCEL 

Colorado [35] (which compares ELCC results with a peak-

period capacity factor calculation, without giving details of 

methodology for the former), and the California Public 

Utilities Commission [36] (which is considering using ELCC 

as the basis for VG’s participation in the capacity market). 

PJM [37], MISO [38] (see presentations in the August and 

December 2015 meetings of MISO’s LOLE Working Group) 

and ISO-NE [39] currently use an average of historic 

performance for some capacity planning purposes, and 

Pacificorp (Appendix N on p675 of [40]) use an LOLP-

weighted mean capacity factor rather than a simple peak 

period capacity factor, following [22]. While in principle 

crediting VG with its mean available capacity may overstate 

its contribution, this approach is reasonable as long as the 

installed capacity is small. PJM [41] and ISO-NE [39],[42] 

both discuss how they incorporate embedded solar in their 

long term load forecasts, and MISO express an intention to 

explore ELCC when sufficient data are available. 

C. Other Studies Considering Solar Power 

In addition to those published by utilities, a number of 

other recent studies have appeared in the research literature. 

[43] and [44] investigate realistic embedding of solar’s 

contribution within generation expansion models. [45] 

describes a large scale study of resource adequacy in the 

Western Interconnection, including investigation of the effect 

of choice of adequacy metric on calculated capacity values. 

[46] presents a calculation of solar capacity value considering 

both mechanical and resource availability. [47] (and other 

papers by the same authors) and [48] investigate the capacity 

value of concentrated solar power. 

VI. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER 

WORK 

This paper has reviewed methods for incorporating solar 

power in resource adequacy studies. The Task Force regards 

the following areas as priorities for further research: 

 Inclusion of both solar and wind power in the same study, 

and whether capacity value metrics such as ELCC and 

EFC may then meaningfully be defined. 

 Interaction of VG with operation of storage and demand 

response. 

 Incorporating VG in capacity mechanisms in a way which 

both reflects its contribution to risk mitigation, and 

provides correct incentives for capacity investment. 

 Joint statistical modelling of VG resource and demand, so 

as to provide confidence bounds on risk model outputs 

such as LOLE and ELCC, and also sequential modelling 

to allow exploration of variability of out-turn about 

expected values. 
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