18 research outputs found

    Inactivation and anion selectivity of volume-regulated VRAC channels depend on carboxy-terminal residues of the first extracellular loop

    Get PDF
    Canonical volume-regulated anion channels (VRACs) are crucial for cell volume regulation and have many other important roles including tumor drug resistance and release of neurotransmitters. Although VRAC-mediated swelling-activated chloride currents (ICl,vol) have been studied for decades, exploration of the structure-function relationship of VRAC has become possible only after the recent discovery that VRACs are formed by differently composed heteromers of LRRC8 proteins. Inactivation of ICl,vol at positive potentials, a typical hallmark of VRACs, strongly varies between native cell types. Exploiting the large differences in inactivation between different LRRC8 heteromers, we now used chimeras assembled from isoforms LRRC8C and LRRC8E to uncover a highly conserved extracellular region preceding the second LRRC8 transmembrane domain as a major determinant of ICl,vol inactivation. Point mutations identified two amino-acids (Lys98 and Asp100 in LRRC8A and equivalent residues in LRRC8C and -E) which upon charge reversal strongly altered the kinetics and voltage-dependence of inactivation. Importantly, charge reversal at the first position also reduced the iodide>chloride permeability of ICl,vol. This change in selectivity was stronger when both the obligatory LRRC8A subunit and the other co-expressed isoform (LRR8C or -E) carried such mutations. Hence the carboxy-terminal part of the first extracellular loop not only determines VRAC inactivation, but might also participate in forming its outer pore. Inactivation of VRACs may involve a closure of the extracellular mouth of the permeation pathway

    Brain blood vessel autoantibodies in patients with NMDA and GABAA receptor encephalitis: identification of unconventional Myosin-X as target antigen

    Get PDF
    INTRODUCTION: The antibody repertoire from CSF-derived antibody-secreting cells and memory B-cells in patients with encephalitis contains a considerable number of antibodies that do not target the disease-defining autoantigen such as the GABA or NMDA receptors. This study focuses on the functional relevance of autoantibodies to brain blood vessels in patients with GABAA and NMDA receptor encephalitis. METHODS: We tested 149 human monoclonal IgG antibodies from the cerebrospinal fluid of six patients with different forms of autoimmune encephalitis on murine brain sections for reactivity to blood vessels using immunohistochemistry. Positive candidates were tested for reactivity with purified brain blood vessels, effects on transendothelial electrical resistance (TEER), and expression of tight junction proteins as well as gene regulation using human brain microvascular endothelial hCMEC/D3 cells as in vitro blood-brain barrier model. One blood-vessel reactive antibody was infused intrathecally by pump injection in mice to study in vivo binding and effects on tight junction proteins such as Occludin. Target protein identification was addressed using transfected HEK293 cells. RESULTS: Six antibodies reacted with brain blood vessels, three were from the same patient with GABAAR encephalitis, and the other three were from different patients with NMDAR encephalitis. One antibody from an NMDAR encephalitis patient, mAb 011-138, also reacted with cerebellar Purkinje cells. In this case, treatment of hCMEC/D3 cells resulted in decreased TEER, reduced Occludin expression, and mRNA levels. Functional relevance in vivo was confirmed as Occludin downregulation was observed in mAb 011-138-infused animals. Unconventional Myosin-X was identified as a novel autoimmune target for this antibody. DISCUSSION: We conclude that autoantibodies to blood vessels occur in autoimmune encephalitis patients and might contribute to a disruption of the blood-brain barrier thereby suggesting a potential pathophysiological relevance of these antibodies

    Preclinical safety and efficacy of a therapeutic antibody that targets SARS-CoV-2 at the sotrovimab face but is escaped by Omicron

    Get PDF
    The recurrent emerging of novel viral variants of concern (VOCs) with evasion of preexisting antibody immunity upholds severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) case numbers and maintains a persistent demand for updated therapies. We selected the patient-derived antibody CV38-142 based on its potency and breadth against the VOCs Alpha, Beta, Gamma, and Delta for preclinical development into a therapeutic. CV38-142 showed in vivo efficacy in a Syrian hamster VOC infection model after post-exposure and therapeutic application and revealed a favorable safety profile in a human protein library screen and tissue cross-reactivity study. Although CV38-142 targets the same viral surface as sotrovimab, which maintains activity against Omicron, CV38-142 did not neutralize the Omicron lineages BA.1 and BA.2. These results highlight the contingencies of developing antibody therapeutics in the context of antigenic drift and reinforce the need to develop broadly neutralizing variant-proof antibodies against SARS-CoV-2

    Key benefits of dexamethasone and antibody treatment in COVID-19 hamster models revealed by single cell transcriptomics

    Get PDF
    For COVID-19, effective and well-understood treatment options are still scarce. Since vaccine efficacy is challenged by novel variants, short-lasting immunity and vaccine hesitancy, understanding and optimizing therapeutic options remains essential. We aimed at better understanding the effects of two standard-of-care drugs, dexamethasone and anti-SARS-CoV-2 antibodies, on infection and host responses. By using two COVID-19 hamster models, pulmonary immune responses were analyzed to characterize effects of single or combinatorial treatments. Pulmonary viral burden was reduced by anti-SARS-CoV-2 antibody treatment, and similar or increased by dexamethasone alone. Dexamethasone exhibited strong anti-inflammatory effects and prevented fulminant disease in a severe disease model. Combination therapy showed additive benefits with both anti-viral and anti-inflammatory potency. Bulk and single-cell transcriptomic analyses confirmed dampened inflammatory cell recruitment into lungs upon dexamethasone treatment, and identified a specifically responsive subpopulation of neutrophils, thereby indicating a potential mechanism of action. Our analyses confirm the anti-inflammatory properties of dexamethasone and suggest possible mechanisms, validate anti-viral effects of anti-SARS-CoV-2 antibody treatment, and reveal synergistic effects of a combination therapy, thus informing more effective COVID-19 therapies

    SARS-CoV-2 Beta variant infection elicits potent lineage-specific and cross-reactive antibodies

    Get PDF
    SARS-CoV-2 Beta variant of concern (VOC) resists neutralization by major classes of antibodies from COVID-19 patients and vaccinated individuals. Here, serum of Beta-infected patients revealed reduced cross-neutralization of wildtype virus. From these patients, we isolated Beta-specific and cross-reactive receptor-binding domain (RBD) antibodies. The Beta-specificity results from recruitment of VOC-specific clonotypes and accommodation of mutations present in Beta and Omicron into a major antibody class that is normally sensitive to these mutations. The Beta-elicited cross-reactive antibodies share genetic and structural features with wildtype-elicited antibodies, including a public VH1-58 clonotype targeting the RBD ridge. These findings advance our understanding of the antibody response to SARS-CoV-2 shaped by antigenic drift with implications for design of next-generation vaccines and therapeutics

    Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits

    Get PDF
    The growth hormone/insulin-like growth factor (IGF) axis can be manipulated in animal models to promote longevity, and IGF-related proteins including IGF-I and IGF-binding protein-3 (IGFBP-3) have also been implicated in risk of human diseases including cardiovascular diseases, diabetes, and cancer. Throug

    A SARS-CoV-2 neutralizing antibody protects from lung pathology in a COVID-19 hamster model

    Get PDF
    The emergence of SARS-CoV-2 led to pandemic spread of coronavirus disease 2019 (COVID-19), manifesting with respiratory symptoms and multi-organ dysfunction. Detailed characterization of virus-neutralizing antibodies and target epitopes is needed to understand COVID-19 pathophysiology and guide immunization strategies. Among 598 human monoclonal antibodies (mAbs) from ten COVID-19 patients, we identified 40 strongly neutralizing mAbs. The most potent mAb CV07-209 neutralized authentic SARS-CoV-2 with IC(50) of 3.1 ng/ml. Crystal structures of two mAbs in complex with the SARS-CoV-2 receptor-binding domain at 2.55 and 2.70 A revealed a direct block of ACE2 attachment. Interestingly, some of the near-germline SARS-CoV-2 neutralizing mAbs reacted with mammalian self-antigens. Prophylactic and therapeutic application of CV07-209 protected hamsters from SARS-CoV-2 infection, weight loss and lung pathology. Our results show that non-self-reactive virus-neutralizing mAbs elicited during SARS-CoV-2 infection are a promising therapeutic strategy

    A therapeutic non-self-reactive SARS-CoV-2 antibody protects from lung pathology in a COVID-19 hamster model

    Get PDF
    The emergence of SARS-CoV-2 led to pandemic spread of coronavirus disease 2019 (COVID-19), manifesting with respiratory symptoms and multi-organ dysfunction. Detailed characterization of virus-neutralizing antibodies and target epitopes is needed to understand COVID-19 pathophysiology and guide immunization strategies. Among 598 human monoclonal antibodies (mAbs) from 10 COVID-19 patients, we identified 40 strongly neutralizing mAbs. The most potent mAb, CV07-209, neutralized authentic SARS-CoV-2 with an IC(50) value of 3.1 ng/mL. Crystal structures of two mAbs in complex with the SARS-CoV-2 receptor-binding domain at 2.55 and 2.70 Ã… revealed a direct block of ACE2 attachment. Interestingly, some of the near-germline SARS-CoV-2-neutralizing mAbs reacted with mammalian self-antigens. Prophylactic and therapeutic application of CV07-209 protected hamsters from SARS-CoV-2 infection, weight loss, and lung pathology. Our results show that non-self-reactive virus-neutralizing mAbs elicited during SARS-CoV-2 infection are a promising therapeutic strategy

    Preoperative medical treatment in Cushing's syndrome : frequency of use and its impact on postoperative assessment : data from ERCUSYN

    Get PDF
    Background: Surgery is the definitive treatment of Cushing's syndrome (CS) but medications may also be used as a first-line therapy. Whether preoperative medical treatment (PMT) affects postoperative outcome remains controversial. Objective: (1) Evaluate how frequently PMT is given to CS patients across Europe; (2) examine differences in preoperative characteristics of patients who receive PMT and those who undergo primary surgery and (3) determine if PMT influences postoperative outcome in pituitary-dependent CS (PIT-CS). Patients and methods: 1143 CS patients entered into the ERCUSYN database from 57 centers in 26 countries. Sixty-nine percent had PIT-CS, 25% adrenal-dependent CS (ADR-CS), 5% CS from an ectopic source (ECT-CS) and 1% were classified as having CS from other causes (OTH-CS). Results: Twenty per cent of patients took PMT. ECT-CS and PIT-CS were more likely to receive PMT compared to ADR-CS (P < 0.001). Most commonly used drugs were ketoconazole (62%), metyrapone (16%) and a combination of both (12%). Median (interquartile range) duration of PMT was 109 (98) days. PIT-CS patients treated with PMT had more severe clinical features at diagnosis and poorer quality of life compared to those undergoing primary surgery (SX) (P < 0.05). Within 7 days of surgery, PIT-CS patients treated with PMT were more likely to have normal cortisol (P < 0.01) and a lower remission rate (P < 0.01). Within 6 months of surgery, no differences in morbidity or remission rates were observed between SX and PMT groups. Conclusions: PMT may confound the interpretation of immediate postoperative outcome. Follow-up is recommended to definitely evaluate surgical results

    Chimeric autoantibody receptor T cells deplete NMDA receptor-specific B cells

    No full text
    Anti-NMDA receptor (NMDAR) autoantibodies cause NMDAR encephalitis, the most common autoimmune encephalitis, leading to psychosis, seizures, and autonomic dysfunction. Current treatments comprise broad immunosuppression or non-selective antibody removal. We developed NMDAR-specific chimeric autoantibody receptor (NMDAR-CAAR) T cells to selectively eliminate anti-NMDAR B cells and disease-causing autoantibodies. NMDAR-CAARs consist of an extracellular multi-subunit NMDAR autoantigen fused to intracellular 4-1BB/CD3ζ domains. NMDAR-CAAR T cells recognize a large panel of human patient-derived autoantibodies, release effector molecules, proliferate, and selectively kill antigen-specific target cell lines even in the presence of high autoantibody concentrations. In a passive transfer mouse model, NMDAR-CAAR T cells led to depletion of an anti-NMDAR B cell line and sustained reduction of autoantibody levels without notable off-target toxicity. Treatment of patients may reduce side effects, prevent relapses, and improve long-term prognosis. Our preclinical work paves the way for CAAR T cell phase I/II trials in NMDAR encephalitis and further autoantibody-mediated diseases
    corecore