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For coronavirus disease 2019 (COVID-19), effective and well-
understood treatment options are still scarce. Since vaccine ef-
ficacy is challenged by novel variants, short-lasting immunity,
and vaccine hesitancy, understanding and optimizing thera-
peutic options remains essential.
We aimed at better understanding the effects of two standard-
of-care drugs, dexamethasone and anti-severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) antibodies, on infec-
tion and host responses. By using two COVID-19 hamster
models, pulmonary immune responses were analyzed to char-
acterize effects of single or combinatorial treatments.
Pulmonary viral burden was reduced by anti-SARS-CoV-2 anti-
body treatment and unaltered or increased by dexamethasone
alone. Dexamethasone exhibited strong anti-inflammatory ef-
fects and prevented fulminant disease in a severe disease model.
Combination therapy showed additive benefits with both anti-
viral and anti-inflammatory potency. Bulk and single-cell tran-
scriptomic analyses confirmed dampened inflammatory cell
recruitment into lungs upon dexamethasone treatment and
identified a specifically responsive subpopulationof neutrophils,
thereby indicating a potential mechanism of action.
Our analyses confirm the anti-inflammatory properties of
dexamethasone and suggest possible mechanisms, validate
anti-viral effects of anti-SARS-CoV-2 antibody treatment,
and reveal synergistic effects of a combination therapy, thus in-
forming more effective COVID-19 therapies.
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INTRODUCTION
A novel coronavirus (CoV), severe acute respiratory syndrome
CoV-2 (SARS-CoV-2) emerged in December 2019 in Wuhan,
China and evolved rapidly into an ongoing pandemic.1 While
development of vaccines was successful, there is still a lack
of approved, effective, and well-understood CoV disease 2019
(COVID-19) treatments.2,3

To devise successful host-directed therapeutic strategies, understand-
ing of COVID-19 pathogenesis is required. For COVID-19 patients,
virus-triggered exuberant cytokine release and associated tissue
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damage play a crucial role in disease severity, e.g., elevated levels of
pro-inflammatory cytokines, as well as loss of effector T cells were
associated with fatal outcomes.4–7 Despite growing knowledge
regarding the mechanisms of severe disease, very few treatment op-
tions are available, so that the use of corticosteroids, specifically dexa-
methasone, remains the treatment of choice for many critically ill
patients.

Initially, use of corticosteroids was not recommended in treatment
guidelines due to their broadly immunosuppressive action.8–10

Evidently, glucocorticoid treatment can result in impaired virus clear-
ance.11 Nevertheless, in the RECOVERY trial, clinical application of
dexamethasone yielded positive effects, especially for COVID-19 pa-
tients requiring oxygen therapy.12 Although corticosteroids are now
used routinely to treat critically ill COVID-19 patients, putative haz-
ards for mild to moderate COVID-19 patients as well as mechanisms
underlying its protective efficacy in severe COVID-19 remain obscure
and only begin to be investigated in greater depth.13

Since the development of small-molecule inhibitors of virus replica-
tion is difficult, passive immunization using monoclonal antibodies
(mAbs) became an important approach to COVID-19 therapy rela-
tively early in the pandemic. SARS-CoV-2 cell entry inhibition by
mAb targeting the receptor-binding domain (RBD) of the spike pro-
tein revealed high effectivity.14 Various anti-SARS-CoV-2 antibodies
have been developed and are currently tested in in vivo models or in
clinical trials.15–17 The first approved anti-SARS-CoV-2 mAb was
REGN-COV2 a combination of the mAbs casirivimab and imdevi-
mab. Effectivity depends on timing of therapy, as application early
in disease can prevent high-risk outpatient hospitalization.18 In fact,
the TICO trial demonstrated that application of neutralizing mAbs,
sotrovimab and BRII-196 plus BRII-198, in already hospitalized
COVID-19 patients failed to improve their clinical outcomes.19 Yet
early therapy or prophylaxis reduces virus titers in the respiratory
tract and consequently the risk of severe disease progression.20,21

The therapeutic activity of mAbs depends critically on the presence
of their binding sites in currently circulating virus variants.22 Dexa-
methasone, in contrast, acts non-specifically on the hosts’ immune
response and is less likely to lose therapeutic power to new variants
if induced immune responses remain similarly pathogenic. Dexa-
methasone and mAbs target distinct pathological aspects of
COVID-19, namely broad inflammation and the causative pathogen,
respectively. To date, detailed understanding of the mechanisms
behind the action of these two standard treatments is still not fully
developed and recent clinical trials missed to evaluate their synergistic
potential. Hamsters are well established and widely used animal
models for COVID-1923 that were used previously to examine effects
of glucocorticoid24 and anti-viral and glucocorticoid combination
treatment25 in vivo. In these studies, beneficial anti-inflammatory ef-
fects of glucocorticoid treatment became evident; at the same time, vi-
rus replication was rather enhanced by glucocorticoids. This outcome
provides rationale for applying glucocorticoid treatment together
with virus-neutralizing mAbs, which is conceptually similar to
combinatorial dexamethasone plus remdesivir treatment mentioned
in the NIH COVID-19 treatment guidelines.26 Still, there is the
need for more thorough characterization of mechanisms underlying
drug action, preferably in more than one model organism. To fill
this knowledge gap, we examined the therapeutic effects of dexameth-
asone and monoclonal anti-SARS-CoV-2 antibody treatment as well
as their potential as synergistic combinatorial therapy in hamster
models of moderate and severe COVID-19 using single-cell and
bulk transcriptome-based analyses.
RESULTS
Purpose and study design

This study aims to compare two widely used COVID-19 treatments,
dexamethasone and mAbs, as well as a combination thereof. To this
end, we employed two COVID-19 hamster models, the Syrian and
the Roborovski hamster, representing moderate and more severe
COVID-19-like disease, respectively. Twenty-four individuals of
both species were experimentally infected with 1 � 105 plaque-form-
ing units (pfu) of the ancestral SARS-CoV-2 variant B.1 (BetaCoV/
Germany/BavPat1/2020) and divided into four groups of six animals
each that received either mAb (30 mg/kg, single treatment), dexa-
methasone (2 mg/kg/day), mAb (30 mg/kg, single treatment) and
dexamethasone (2 mg/kg/day), or mock treatment (PBS, daily). Since
the course of disease varies considerably between both species, we
choose to apply treatment at the onset of clinical signs for each species,
which is 24 h for Roborovski or 48 h post-infection for Syrian ham-
sters. To further account for species-specific differences, we scheduled
three animals per group for sampling at 3 and 5 days post-infection
(dpi) in case of Roborovski hamsters or 5 and 7 dpi for Syrian ham-
sters. Due to early onset of severe disease, two mAb-treated and one
mock-treated Roborovski hamster reached defined humane endpoints
at day 2 post-infection and had to be terminated ahead of schedule.
Clinical and virological parameters were determined for each animal
in this study; furthermore, lungs of Roborovski hamsters taken at day
3 were subjected to single-cell RNA (scRNA) sequencing to determine
transcriptional response to infection and treatment on a single-cell
level.
Dexamethasone treatment prevents severe disease, while

monoclonal antibodies decrease viral burden

Following SARS-CoV-2 infection, Syrian hamsters lost body
weight. Irrespective of treatment, Syrian hamsters failed to show
significant differences in body weight development, nor did they
present with severe signs of disease (Figures 1A and 1B). Titers
of replication-competent virus of all hamsters receiving mAb or
combination treatment were below the detectable level at all sam-
pling time points. The use of dexamethasone alone increased viral
titers in the lungs of Syrian hamsters and delayed viral clearance
with moderately increased titers on day 5 and significantly
increased titers at 7 dpi (Figure 1C). The same trend was also
evident in virus genomic RNA (gRNA) levels in the lungs (Fig-
ure 1D), but not in the upper respiratory tract (Figure 1E), which
is the common site of sampling in patients.
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Contrary to Syrian hamsters, Roborovski hamsters, which can
develop fulminant disease early after infection,27 displayed marked
differences in clinical parameters in response to specific treatments.
Specifically, both dexamethasone alone and in combination with
mAb protected Roborovski hamsters from severe disease progres-
sion. By contrast, hamsters assigned to mAb treatment (2/6 on 2
dpi) and animals receiving mock treatment (2/6 on 2 dpi or 3
dpi) had to be euthanized prior to the terminal time point as they
reached human endpoint criteria (Figure 1F). Hamsters that devel-
oped severe disease in respective groups presented with drastic drops
in body temperature at 2 dpi (Figure 1G). Until the end of the exper-
iment, body weights in the dexamethasone-treated groups remained
stable, animals in the mAb treatment group recovered from initial
weight losses, while mock-treated animals continued to lose weight
throughout the experiment (Figure 1H). Similar to Syrian hamsters,
replicating virus was below the detectable level in the lungs of Ro-
borovski hamsters treated with either mAb or combinatorial therapy
at days 3 and 5 post-infection. Only Roborovski hamsters that had to
be terminated at 2 dpi showed high titers of replication-competent
virus despite mAb treatment (Figure 1I). In contrast to the results
obtained from Syrian hamsters, no boost of viral replication was
observed in the dexamethasone-treated group of Roborovski ham-
sters compared with mock-treated animals. This result was evident
for all time points on both replicating virus and virus gRNA level
in the lungs as well as in the upper respiratory tract (Figures 1J
and 1K).

Dexamethasone restricts the inflammatory response

Dexamethasone is a useful drug to treat severe COVID-19 patients.12

To better characterize effects on local pathomechanisms, we performed
lung histopathology upon dexamethasone, mAb, and combinatorial
therapy against SARS-CoV-2 in models of moderate (Syrian hamster)
and severe (Roborovski hamster) COVID-19 (Figures 2A–2F).

Lung histology indicated that, in both Syrian (Figure 2A) and Robor-
ovski hamsters (Figure 2B), dexamethasone and combination treat-
ment markedly reduced immune cell infiltrates over time (Figure S1).
Figure 1. Clinics and virology of SARS-COV-2-infected Syrian and Roborovski

(A–E) Syrian hamsters were challenged with SARS-CoV-2 (1� 105 pfu wild type [WT]) an

dpi with 2 mg/kg dexamethasone (Dex; n = 6), or received combination treatment (Dex

hamsters and body weight (B) development in percent after virus challenge were measu

treatment group. (B) Results are displayed as mean ± SD. (C) Quantification of replication

shown. Dotted line marks the limit of detection (DL = 100 pfu). Titers below the detection

detected in homogenized lung tissue (D) and oropharyngeal swabs (E) is shown. (C–E) R

with SARS-CoV-2 (1� 105 pfuWT) and treated once at 1 dpi with 30 mg/kg mAb CV07-

received combination treatment (Dex +mAb; n = 6). (F–H) Survival rates (F) in percent of S

and body weight (H) development in percent after virus challenge were measured until

criteria (non-survivors) according to treatment group. Two hamsters from the mAb gro

sented by orange squares; I–K). One hamster from themock-treated group reached end

H) Results are displayed as mean ± SD. (I) Virus titers displayed as pfu per gram homoge

Titers below the detection limits were set to DL/2 = 50 pfu. (J and K) Quantification of gRN

Results are displayed as mean with range. (A and F) Log rank test is shown. (B, G, and

shown. *p < 0.05 (mock versus Dex); #p < 0.05 (mock versus mAb); ##p < 0.01 (mock

mAb). (C–E and I–K) Kruskal-Wallis is shown. Dunn’s multiple comparisons test is show
Inflammation and bronchitis scores were reduced from 5 dpi on in all
groups receiving dexamethasone, which corresponds to 3 or 4 days
post-treatment start for Syrian and Roborovski hamsters, respectively
(Figures 2C–2F). mAb treatment alone reduced pneumonia, however,
to a lesser extent as compared to dexamethasone (Figures 2A–2F and
S1).

Next, we investigated how anti-viral and inflammatory transcrip-
tional responses were influenced by treatment in Syrian (Figures 2G
and S2A) and Roborovski hamsters (Figures 2H and S2B) over
time. Therefore, we analyzed previously established viral-infection-
related gene sets, response to type I interferon (IFN) and IFN-gamma
(IFN-g).28,29 In Syrian hamsters, the amplitude of the type I IFN
response genes decreased from 5 to 7 dpi in the absence of treatment
(Figures 2G and S2A). mAb treatment alone or in combination with
dexamethasone led to further reduction in gene expression of the type
I IFN response genes. In contrast, IFN-g response set genes decreased
more upon dexamethasone compared with mAb treatment
(Figures 2G and S2A). Similar effects were observed in Roborovski
hamsters (Figures 2H and S2B). The combination treatment led to
a strong reduction of both gene sets, independent of hamster species
(Figures 2G and 2H).

Taken together, treatment-related improvement in clinical parame-
ters and histopathology correlated with substantially altered gene
expression profiles in general and a reduced expression of the response
to IFN-g gene set following dexamethasone treatment specifically.

Dexamethasone reduces influx of immune cells and stabilizes

endothelial cells

As described above, both mAb and dexamethasone treatment, and in
particular their combination, attenuated inflammatory aspects of
pneumonia following SARS-CoV-2 infection, thereby mitigating the
otherwise severe disease observed in Roborovski hamsters.

In order to investigate cellular mechanisms underlying these treat-
ment effects, we next performed pulmonary scRNA sequencing
hamsters under COVID-19 therapy

d treated once at 2 dpi with 30mg/kgmAb CV07-209 (mAb; n = 6), daily starting at 2

+ mAb; n = 6). (A and B) Survival rates (A) in percent of SARS-CoV-2-infected Syrian

red until analysis time point (5 dpi, n = 3 and 7 dpi, n = 3) and displayed according to

-competent virus as plaque-forming units (pfu) per gram homogenized lung tissue is

limits were set to DL/2 = 50 pfu. (D and E) Number of genomic RNA (gRNA) copies

esults are shown as mean with range. (F–K) Roborovski hamsters were challenged

209 (mAb; n = 6), daily starting at 1 dpi with 2 mg/kg dexamethasone (Dex; n = 6), or

ARS-CoV-2-infected Roborovski hamsters, body temperature (G) in degree Celsius,

planned analysis time point (3 dpi and 5 dpi) or until termination due to score sheet

up and one hamster from the mock-treated group were euthanized at 2 dpi (repre-

point criteria at 3 dpi and was included in 3 dpi time point analysis as planned. (G and

nized lung tissue are shown. Dotted line marks the limit of detection (DL = 100 pfu).

A copies in homogenized lung tissue (J) and oropharyngeal swabs (K) is shown. (I–K)

H) Two-way ANOVA is shown. Dunnett’s multiple comparisons test against mock is

versus mAb), +p < 0.05 (mock versus Dex + mAb), ++p < 0.01 (mock versus Dex +

n. *p < 0.05.
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(scRNA-seq) of Roborovski hamsters for all treatment groups at 3
dpi. First, we evaluated the absolute content and composition of
cell types by measuring total cell counts of the dissociated tissue
(Figure 3A) and relative cell type distribution from scRNA-seq
data (Figures 3B–3D and S3A–S3J). Lungs from dexamethasone
(alone or in combination with mAb)-treated hamsters yielded
significantly lower total cell counts (Figure 3A). This reduction
likely originated from reduced infection-triggered pulmonary im-
mune cell immigration. NK cell numbers were significantly lower
in dexamethasone-treated groups compared with mock- and
mAb-treated hamsters; similarly, neutrophil, monocytic macro-
phage, Treml4+ monocyte, and T and B cell showed reduced
numbers in hamsters receiving dexamethasone, although the differ-
ence was not statistically significant (Figures 3B and 3C). Notably,
endothelial cells had significantly higher counts in groups treated
with a combination therapy of dexamethasone and mAb (Figure 3D)
as compared with mock-treated animals. Higher endothelial cell
counts were likely caused by mechanisms governing endothelial
protection, rather than cell proliferation, since increased Mki67
and Top2 expression was not detectable in endothelial cells (Fig-
ure S3K). The notion of endothelial protection was supported by
histopathological analyses showing reduced edema formation
and reduced endothelialitis in dexamethasone-treated groups
(Figures 3E and 3F, upper panel), thus replicating findings in pa-
tients.30 However, this conclusion is limited by a lack of information
on how treatment would have affected baseline endothelial cell
numbers in naive animals. Histopathological analyses likewise
confirmed reduction of recruited immune cells following single
dexamethasone treatment alone and in combination with mAb (Fig-
ure 3F). In contrast to mAb treatment alone, dexamethasone there-
fore largely reduced recruitment of immune cells.

Neutrophils and monocytic macrophages exhibit strong

responses to dexamethasone

Dexamethasone directly impairs transcription of nuclear factor kB
(NF-kB) target genes via Rela/p65 and Crebbp/CBP.31 In order to
assess the effect of dexamethasone treatment, known target genes
of the glucocorticoid receptor, the coagulation cascade factor
F13a1,32 the plasma apolipoprotein serum amyloid a-3 protein
(Saa3),33 and Dusp1/MKP-1, an inhibitor of the mitogen-
activated protein (MAP) kinase pathways,34 were investigated
(Figures S4A–S4C). Neutrophils and macrophages, particularly
monocytic macrophages, from dexamethasone-treated groups
showed strong increase in target gene expression, F13a1, Dusp1,
and Saa3 (Figures S4A–S4C).
Figure 2. Dexamethasone treatment dampens inflammatory responses in SAR

(A and B) Longitudinal sections of H&E-stained left lungs from representative Syrian

Consolidated areas indicative of pneumonia appear in darker colors. Scale bars repres

accounting for the severities of pneumonia, immune cell influx, perivascular lymphocyte

pneumocyte hyperplasia is shown. (D and F) Bronchitis score (D, Syrian; F, Roborovski

Gene expression (G, Syrian; H, Roborovski hamsters) was quantified using polyA RNA hig

fragments per kilo base of transcript per million mapped fragments (fpkm) values calcul

genes. Time points and treatments are shown on top of the heatmap. Samples from a
For an unbiased view of the data, we selected all genes that were at least
4-fold upregulated in all cell types (Figure 4A). Again,monocyticmac-
rophages and neutrophils stood out with several upregulated genes,
including Saa3 and F13a1, as mentioned above. We identified a dexa-
methasone-induced transcriptional program common to several cell
types, whereas some genes, for example, Gal (coding for galanin and
galanin message-associated peptides) in endothelial cells were cell
type specific. In contrast, tissue cells, including endothelial cells, alve-
olar epithelial cell type 2 (AT2), or smooth muscle cells, did not show
substantial upregulation of gene expression in response to dexameth-
asone alone (Figure 4A). Notably, the mRNA of the glucocorticoid
receptor, encoded by the Nr3c1 gene, is ubiquitously present in both
Roborovski hamsters and Syrian hamsters, and not modulated by
SARS-CoV-2 infection or the employed treatments (Figure S4D).

Next, we asked which disease-relevant changes in gene expression
were influenced by treatment in different cell types. We therefore as-
sessed changes in gene expression between treatments for each cell
type in an unbiased manner (Figure S4E). We noticed consistent
downregulation of a group of IFN-induced genes (IFN-stimulated
genes [ISGs]), such as Ifit2/3, Ifi27, and Ifi209 in animals treated
with mAb alone or in combination with dexamethasone, but not
with dexamethasone alone. Conversely, some genes, such as Tnfsf10
(coding for the pro-inflammatory cytokine Trail) in neutrophils,
were more reduced in dexamethasone-treated compared with mAb-
treated animals.

In order to understand the changes in gene expression patterns caused
by these treatments, we defined, based on our Syrian hamster scRNA-
seq data,28 two groups of gene sets. The first was viral pathogen-asso-
ciated molecular pattern (PAMP) dependent (identified as “NF-kB
dependent”), the second induced by the infection in general (“IFN
dependent”; Figure S4F). Whereas the IFN-dependent gene expres-
sion was reduced more by mAb compared with dexamethasone treat-
ment, for the “NF-kB-dependent” gene set, we in tendency observed
the opposite (Figure 4B). We scrutinized this effect in detail in mono-
cytic macrophages and neutrophils and found that, in neutrophils, the
downregulation of the NF-kB-driven cytokine genes Cxcl10 and
Tnfsf10 in tendency experience stronger downregulation by dexa-
methasone compared with the ISG Mx2 (Figure 4C). For all genes,
the combination treatment showed an additive effect (Figure 4).

Overall, these data suggest that the reduced viral load in mAb-treated
animals leads to a generally reduced anti-viral/type 1 IFN signal,
whereas dexamethasone treatment downregulates specific genes in
S-CoV-2-infected hamsters

hamsters (A) and Roborovski hamsters (B) at indicated time points post-infection.

ent 3 mm. (C and E) Lung inflammation score (C, Syrian; E, Roborovski hamsters)

cuffs, bronchitis, bronchial epithelial necrosis, alveolar epithelial necrosis, and type II

hamsters) assessing bronchitis and bronchial epithelial necrosis is shown. (G and H)

h-throughput sequencing fromSyrian hamster lung samples. Shown are Z scores of

ated over all samples on a color scale ranging from blue (�4) to red (+4) for selected

nimals euthanized at 2 dpi are shown in orange.
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Figure 3. Dexamethasone limits immune cell recruitment in Roborovski hamsters

Roborovski hamsters were challenged with SARS-CoV-2 (1 � 105 pfu WT), treated once at 1 dpi with 30 mg/kg mAb CV07-209 (mAb), daily starting at 1 dpi with 2 mg/kg

dexamethasone (Dex), or received combination treatment (Dex + mAb). At 3 dpi, n = 3 Roborovski hamsters of each group were subjected to pulmonary single-cell RNA

sequencing analysis. Pulmonary single-cell suspensions were generated, cells microscopically counted, and total numbers per lung lobe calculated. (A) Cell count of isolated

(legend continued on next page)
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some cell types, such as the pro-inflammatory cytokines Tnfsf10 and
Cxcl10 in neutrophils, thereby attenuating classic features of pneu-
monia in animals receiving dexamethasone.

Dexamethasone alters the neutrophilic response to SARS-CoV-

2 infection

Given that neutrophils are critical drivers of immune pathology and
showed a particularly strong reactivity to dexamethasone treatment,
we investigated this cell type in greater detail. For this, we sub-clus-
tered the neutrophil population into 11 subpopulations (Figure 5A).

In order to understand the transcriptional dynamics within neutro-
phils and the influence of the treatments used here, we performed
an RNA velocity analysis that can predict the future state of individual
cells.35,36 This showed a transcriptional trend toward the cluster on
the bottom of the projection (cluster 6 in Figure 5A), which also
showed a particularly high viral RNA content (Figures 5B and
S5A). Importantly, cell density in that cluster decreased upon dexa-
methasone treatment (Figures 5C and S5B).

Among the genes that were particularly prominent in cluster 6 were
the cytokines and macrophage and lymphocyte attractants Csf1 and
Ccl3 (Figure S5C).37,38 We therefore plotted the expression of these
two genes along with the ISG/NF-kB targets Mx2/Tnfsf10/Cxcl10,
which showed that neutrophils in cluster 6 express Csf1 and Ccl3 at
particularly high levels (Figure 5D); at the same time, these cells
become less abundant upon dexamethasone and particularly combi-
nation treatment (Figure 5E). Concomitantly, by histopathology anal-
ysis, we observed less neutrophils in the dexamethasone-treated
groups (Figure 5F). Of note, cells expressing mRNAs of receptors
(Csf1r, Ccr1, Ccr4, and Ccr5) corresponding to cytokines Csf1 and
Ccl3 were less abundant in the lungs upon dexamethasone treatment
(Figure S5D; compare with Figures 3B and S3B). In addition, neutro-
phil-cluster 6 showed particularly low and high expression of Il1r2
and Isg20 (Figure S5E), respectively, thereby recapitulating the phe-
notypes seen for immunosuppressive and IFNactive neutrophils in
the peripheral blood of COVID-19 patients.13

To generalize the observation of this transcriptional dynamic, we
applied diffusion map analysis of neutrophils to identify their
most prominent direction of variation (Figure S5F).39,40 For each
treatment, we show the neutrophil density along the diffusion axis
(Figure S5G, upper part), which we defined as the first non-trivial
component of the diffusion map. The directional progression toward
the right on this axis (which is the same cellular state represented as
cells per lung lobe according to treatment group is shown. (B–D) Calculated numbers of

cells (D) based on scRNA-seq-determined cell frequencies (Figure S3) and according to

way ANOVA and Tukey’s multiple comparisons test are shown. *p < 0.05, **p < 0.01,

assessment of alveolar and perivascular edema is shown. (F) H&E-stained histopatholog

from Roborovski hamsters at 3 dpi is shown. Mock- andmAb-treated groups hadmoder

vascular endothelium remainedmostly intact in Dex- and Dex +mAb-treated groups. The

compared with Dex- and Dex + mAb-treated animals. Differences were particularly ob

degree of alveolar epithelial cell necrosis. Scale bars: 15 mm (top) and 25 mm (bottom).
neutrophil-cluster 6 above) is present in all conditions, as shown by
the average RNA velocity projected onto the diffusion axis (Fig-
ure S5G, lower part). However, most neutrophils derived from ham-
sters treated with dexamethasone or combinatorial treatment are
found at the leftmost part of the axis, whereas neutrophils from
hamsters with mAb and mock treatment are split into a left and
right part, confirming that, with dexamethasone treatment, an other-
wise directional progression of neutrophils is limited. In order to
relate the diffusion axis to biological effects, we scored hallmark sig-
natures41 for every neutrophil and linearly correlated each hallmark
with the diffusion axis (Figure S5H, upper part). In addition, we
correlated the expression profiles of each gene with the diffusion
axis (Figure S5H, lower part). These correlations revealed that the
drive toward neutrophil-cluster 6 marked by high expression of
Csf1 and Ccl3 and elevated amounts of viral RNA is accompanied
by an increase of interferon and inflammatory response gene expres-
sion (such as Isg15 or Cd274) and a decrease in the levels of classical
neutrophil marker genes, such as S100a8/9 or Pglyrp1. Dexametha-
sone limits this dynamic, effectively keeping the neutrophils in a sta-
tionary transcriptomic state at the left part of the diffusion axis. As
we will discuss in detail, this stagnation could be a reason for the
reduced production of lymphocyte attractants and, consequently,
the reduction of lung infiltrates.

DISCUSSION
In this study, we examined the effects of separate and combined anti-
viral and anti-inflammatory treatments for COVID-19 in two
hamster models reflecting a moderate (Syrian hamster) and severe
(Roborovski hamster) disease course, respectively. Using histopathol-
ogy and bulk and single-cell transcriptomic analysis of hamsters sub-
jected to dexamethasone, mAb, and combination treatment, we
demonstrate treatment efficacy and identified a subset of neutrophils
that express macrophage- and lymphocyte-attracting cytokines and
can be impeded by dexamethasone.

The use of dexamethasone caused a boost of virus replication and a
significant delay of viral clearance in Syrian hamsters, albeit without
significantly worsening the clinical course of disease. In the light of
existing literature on the enhanced replication of respiratory viruses
upon dexamethasone treatment42 and data that overall show a ten-
dency toward a boost of SARS-CoV-2 replication in dexametha-
sone-treated patients,11,43–45 this result is not unexpected and may
imply a risk for increased and/or prolonged transmissibility. Still,
dexamethasone exerted the expected anti-inflammatory effects and
attenuated inflammatory lung injury. As previously reported,16 the
indicated innate immune cells (B), T and B lymphocytes (C), and AT2 and endothelial

treatment group are shown. Data display means ± SD. n = 3 per group. (A–D) Two-

***p < 0.001, and ****p < 0.0001. (E) Edema score resulting from semi-quantitative

y of pulmonary vascular endothelia (upper panel) and lung parenchyma (lower panel)

ate to marked endothelialitis with activation and loss of endothelial cells, whereas the

inflammatory responsewasmore pronounced inmock- andmAb-treated hamsters

served for infiltrating neutrophils, macrophages, and lymphocytes as well as for the
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mAb CV07-209 employed in this study effectively abolished virus
replication within 48 h of treatment. At the dose applied here, the
mAb inhibited the boost of virus replication after dexamethasone
treatment. This suggests that a combination of dexamethasone and
mAb may present an effective way to reduce inflammation and at
the same time suppress virus replication, limiting the risk of viral
transmission. This would advocate for the use of a combination
therapy in patients at risk of severe disease relatively early when active
virus replication is still ongoing and before lung injury or COVID-19-
triggered fibrosis46 develop. Post hoc analysis of clinical trials investi-
gating the efficacy of neutralizing mAbs with a focus on patient sub-
sets that had received dexamethasone as standard of care could aid in
evaluating the clinical suitability of such a combination. Interestingly,
the use of dexamethasone in the Roborovski hamster, a species highly
susceptible to severe COVID-19-like disease, did not boost virus
replication at any of the examined time points. One possible explana-
tion could be that the virus-restrictive immunity targeted by dexa-
methasone in Syrian hamsters is dysregulated in Roborovski ham-
sters, and consequently, its inhibition has no impact on viral control.

Treatment of SARS-CoV-2-infected hamsters with dexamethasone
reduced the extent of lung infiltrates, comparable to what can be
observed in computed tomography (CT) scans of human COVID-
19 patients.47 In the scRNA-seq analysis, this effect was evident as
reduced abundance of infiltrating leukocytes and lymphocytes. In
an unbiased comparison of gene expression patterns in the different
lung cell types, we found that neutrophils are particularly affected
by dexamethasone treatment. A detailed analysis showed that, upon
SARS-CoV-2 infection, neutrophils move toward a state with high
expression of the cytokines Csf1 and Ccl3 and that this movement
is impaired by dexamethasone. Furthermore, the receptors of the
two cytokines are expressed on a range of cell types that become
less abundant in the lungs upon dexamethasone treatment. This
together suggests a mechanistic link underlying the protective effect,
through reduction of lung infiltrates, by dexamethasone. These results
are in line with the key role of neutrophils in COVID-19 pathogen-
esis48 and corroborate recent findings highlighting the effect of
dexamethasone on neutrophils in peripheral blood.13 Although neu-
trophils in blood and lung might not be directly comparable, the
observation by Sinha and colleagues, a neutrophil “IFNactive” pro-
gram restrained by dexamethasone, was similarly observed in the pre-
sent study.

In addition to its effects on polymorphonuclear leukocytes (PMNs),
dexamethasone treatment exerted protective effects on the endothe-
lium of SARS-CoV-2-infected hamsters, likely by reducing endothe-
Figure 4. Macrophages and neutrophils show strongest gene expression chan

(A) Shown are genes with at least 4-fold upregulation in at least one cell type in dexame

compared to mock-treatment. Size and colors of the dots indicate log2-transformed fold

DEseq2 using Benjamini-Hochberg corrections of two-sidedWald test p values. Genes a

dent genes as determined in Figure S4 for the comparisons Dex versus mock and Dex +

and monocytic macrophages (bottom). Shown are the fraction of cells with greater tha
lial injury caused by cytotoxic immunity and bystander effects
conveyed by the pro-inflammatory program executed by highly
stimulated immune cells. As a secondary effect, the expression of in-
flammatory mediators by endothelial cells could also be reduced. Of
clinical relevance, endothelial protection will reduce the development
of lung edema and micro-thrombosis and may thus contribute to
improved gas exchange in dexamethasone-treated patients.

Care should be taken not to transfer findings from animals uncriti-
cally to patients. Yet it should be noted that we and others recently
demonstrated comparability between immunological responses and
pulmonary phenotypes in hamsters and humans in response to
SARS-CoV-2 infection.28,49,50 That notwithstanding, future studies
should ideally compare patient data with the findings reported here
with the obvious constraint of limitations in the availability of corre-
sponding human biomaterial.

In summary, we found that broadly active anti-inflammatory and
immunosuppressive agents, such as dexamethasone, may have a
strong benefit in SARS-CoV-2 infection at high risk for severe disease
when applied before the onset of severe illness, particularly when
combined with an anti-viral agent. A recent analysis showed that
COVID-19-related acute respiratory distress syndrome (ARDS) pa-
tients can be classified into hypo- and hyperinflammatory types,
with corticosteroid treatment being beneficial only for the latter.51

Animal models as the ones described here can help to better dissect
causes and types of COVID-19 lung pathologies and thus help to
improve therapeutic strategies.

MATERIALS AND METHODS
An online supplement is provided, giving more details on the
methods described here.

Ethics statement and COVID-19 hamster models

Experiments including female and male Syrian hamsters (Mesocrice-
tus auratus; breed RjHan:AURA, JanvierLabs, France) and Roborov-
ski hamsters (Phodopus roborovskii, obtained via the German pet
trade) were approved and executed in compliance with all applicable
regulations (Landesamt für Gesundheit und Soziales Berlin, permit
number 0086/20). SARS-CoV-2 (BetaCoV/Germany/BavPat1/2020)
preparation52 and intranasal infection of hamsters with 1 � 105 pfu
were carried out as previously described.27,53 Treatments were applied
as single intraperitoneal (i.p.) treatment with 30 mg/kg mAb CV07-
209 previously described to be effective against the ancestral B.1
SARS-CoV-2 variant used in this study16 and daily intramuscular
(i.m.) treatment with 2 mg/kg dexamethasone in the respective
ges following dexamethasone treatment

thasone- compared with mock-treated animals, all three treatments are separately

changes (FCs) and p values, respectively. Adjusted (adj) p values were calculated by

re ordered by unsupervised clustering. (B) Shown are interferon- and NF-kB-depen-

mAb versus mock. (C) Expression ofMx2, Tnfsf10, and Cxcl10 in neutrophils (top)

n or equal to one mRNA count (means ± SD; n = 3 per group).
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Figure 5. Absence of a specific chemokine-expressing subset of neutrophils upon dexamethasone treatment in Roborovski hamsters

(A) Neutrophils from the scRNA-seq data were sub-clustered using the Louvain algorithm based on their individual transcriptomes and two-dimensional projections

performed using the uniform manifold approximation and projection (UMAP) algorithm. Cells were colored by their cluster identity. (B) Projection is as in (A), but cells are

colored by the log10-transformed percentage of viral RNA. Overlaid are the stream arrows derived from an RNA velocity analysis. Neutrophil cluster 6 is marked with a

light blue oval. (C) Changes in cellular density on the UMAP projection were calculated and cells colored by fold changes of the indicated Dex versus mock. Red indicates

increased density, and blue indicates decreased density. Neutrophil cluster 6 is marked with a light blue oval. (D) Dot plots show the expression of selected genes over all

hamsters in the clusters as defined in (A). The dot size indicates the fraction of cells in the clusters as indicated on the left from mock-treated animals, with greater than or

equal to one mRNA count for the respective gene. Color represents average expression in those cells. (E) Graph indicates the log2-transformed fold changes of the cell

counts in the respective neutrophil clusters 1–10, with all three treatments compared with mock. For example, in cluster 6, there are about one-third less cells (dark blue

bar at �0.6, which corresponds to log2 of 0.66) upon dexamethasone treatment. (F) Histopathology of Roborovski hamsters 3 days after infection revealed moderate to

marked alveolar and interstitial infiltration with viable and degenerate neutrophils (black arrowheads) in mock- and mAb-treated animals as well as elevated numbers of

alveolar macrophages (gray arrowhead). Dex- and Dex + mAb-treated hamsters had lower numbers of neutrophils, especially in their alveolar spaces and mild to

moderate numbers of neutrophils in alveolar capillaries (black arrowheads). Activated alveolar macrophages phagocytized cellular debris and cleared the inflammatory

response (gray arrowhead). Scale bar represents 20 mm.
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groups. Hamsters were monitored daily until they reached scheduled
take-out time points or defined humane endpoints. Virus titers and
RNA copies were determined by plaque assay and quantitative RT-
PCR analysis as previously described.53
1962 Molecular Therapy Vol. 30 No 5 May 2022
Histopathology and in situ hybridization of SARS-CoV-2 RNA

For histopathology and in situ hybridization (ISH), lungs were pro-
cessed and tissues evaluated by board-certified veterinary pathologists
in a blinded fashion following standardized recommendations,
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including pneumonia-specific scoring parameters as described
previously.54

Annotations of the M. auratus and P. roborovskii genome

The M. auratus genome was derived from Ensembl and modified as
previously described.28 The detailed description of the de novo gene
assembly of the Roborovski hamster genome was deposited on a
pre-print server.55

Bulk RNA analysis

For RNA bulk sequencing of both hamster species, the right medial
lung lobe was removed and RNA isolated using Trizol reagent accord-
ing to the manufacturer’s instructions. Bulk RNA sequencing libraries
were constructed using the Nebnext Ultra II Directional RNA Library
Prep Kit (New England Biolabs) and sequenced on a Nextseq 500 or
Novaseq 6000 device. Reads were aligned to the genome using hi-
sat256 and gene expression quantified using quasR.56

Single-cell RNA sequencing

To enable scRNA-seq, cells were isolated from Roborovski hamsters’
caudal lung lobe as previously described.28 One million lung cells per
sample were subjected to cell multiplexing oligo (CMO) labeling ac-
cording to manufacturers’ instructions (3ʹCellPlex Kit Set A; 10�Ge-
nomics). Labeled cells from 12 samples were pooled, filtered, and
counted. Pooled cells were adjusted to a final concentration of
�1,600 cells/mL, and 197,760 cells were split into four equal pools
and subjected to partitioning into Gel-Beads-in-Emulsions with the
aim of recovering a maximum of 120,000 single cells from four lanes
by following the instructions of Chromium Next GEM Single Cell 3ʹ
Reagent Kits v.3.1 (Dual Index) provided by the manufacturer (10�
Genomics). Library sequencing was performed on a Novaseq 6000
device (Illumina), with SP4 flow cells (read1: 28 nt; read2: 150 nt).
Sequencing of one of four libraries failed.

Analysis of single-cell RNA sequencing data

Analysis of the single-cell data was based on Seurat.57 Raw and pro-
cessed data are available through GEO at GEO: GSE191080, code
through Github at GitHub: Berlin-Hamster-Single-Cell-Con-
sortium/Dwarf-Hamster-Dexamethasone-Antibody. Details on sin-
gle-cell analysis and RNA velocity analysis can be found in the online
supplemental information.

DATA AND CODE AVAILABILITY
Raw and processed data are available through GEO at GEO:
GSE191080 , code through Github at GitHub: Berlin-Hamster-Sin-
gle-Cell-Consortium/Dwarf-Hamster-Dexamethasone-Antibody.

SUPPLEMENTAL INFORMATION
Supplemental information can be found online at https://doi.org/10.
1016/j.ymthe.2022.03.014.
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