286 research outputs found

    Gene Variants in the Novel Type 2 Diabetes Loci CDC123/CAMK1D, THADA, ADAMTS9, BCL11A, and MTNR1B Affect Different Aspects of Pancreatic Ξ²-Cell Function

    Get PDF
    OBJECTIVE - Recently, results from a meta-analysis of genome-wide association studies have yielded a number of novel type 2 diabetes loci. However, conflicting results have been published regarding their effects on insulin secretion and insulin sensitivity. In this study we used hyperglycemic clamps with three different stimuli to test associations between these novel loci and various measures of Ξ²-cell function. RESEARCH DESIGN AND METHODS - For this study, 336 participants, 180 normal glucose tolerant and 156 impaired glucose tolerant, underwent a 2-h hyperglycemic clamp. In a subset we also assessed the response to glucagon-like peptide (GLP)-1 and arginine during an extended clamp (n = 123). All subjects were genotyped for gene variants in JAZF1, CDC123/CAMK1D, TSPAN8/LGR5, THADA, ADAMTS9, NOTCH2/ADAMS30, DCD, VEGFA, BCL11A, HNF1B, WFS1, and MTNR1B. RESULTS - Gene variants in CDC123/CAMK1D, ADAMTS9, BCL11A, and MTNR1B affected various aspects of the insulin response to glucose (all P < 6.9 Γ— 10-3). The THADA gene variant was associated with lower Ξ²-cell response to GLP-1 and arginine (both P < 1.6 Γ— 1

    Combined Risk Allele Score of Eight Type 2 Diabetes Genes Is Associated With Reduced First-Phase Glucose-Stimulated Insulin Secretion During Hyperglycemic Clamps

    Get PDF
    OBJECTIVE - At least 20 type 2 diabetes loci have now been identified, and several of these are associated with altered Ξ²-cell function. In this study, we have investigated the combined effects of eight known Ξ²-cell loci on insulin secretion stimulated by three different secretagogues during hyperglycemic clamps. RESEARCH DESIGN AND METHODS - A total of 447 subjects originating from four independent studies in the Netherlands and Germany (256 with normal glucose tolerance [NGT]/ 191 with impaired glucose tolerance [IGT]) underwent a hyperglycemic clamp. A subset had an extended clamp with additional glucagon-like peptide (GLP)-1 and arginine (n = 224). We next genotyped single nucleotide polymorphisms in TCF7L2, KCNJ11, CDKAL1, IGF2BP2, HHEX/IDE, CDKN2A/B, SLC30A8, and MTNR1B and calculated a risk allele score by risk allele counting. RESULTS - The risk allele score was associated with lower first-phase glucose-stimulated insulin secretion (GSIS) (P = 7.1 Γ— 1

    Impact of the solvent capacity constraint on E. coli metabolism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obtaining quantitative predictions for cellular metabolic activities requires the identification and modeling of the physicochemical constraints that are relevant at physiological growth conditions. Molecular crowding in a cell's cytoplasm is one such potential constraint, as it limits the solvent capacity available to metabolic enzymes.</p> <p>Results</p> <p>Using a recently introduced flux balance modeling framework (FBAwMC) here we demonstrate that this constraint determines a metabolic switch in <it>E. coli </it>cells when they are shifted from low to high growth rates. The switch is characterized by a change in effective optimization strategy, the excretion of acetate at high growth rates, and a global reorganization of <it>E. coli </it>metabolic fluxes, the latter being partially confirmed by flux measurements of central metabolic reactions.</p> <p>Conclusion</p> <p>These results implicate the solvent capacity as an important physiological constraint acting on <it>E. coli </it>cells operating at high metabolic rates and for the activation of a metabolic switch when they are shifted from low to high growth rates. The relevance of this constraint in the context of both the aerobic ethanol excretion seen in fast growing yeast cells (Crabtree effect) and the aerobic glycolysis observed in rapidly dividing cancer cells (Warburg effect) should be addressed in the future.</p

    Low Levels of Human Antibodies to Gametocyte-Infected Erythrocytes Contrasts the PfEMP1-Dominant Response to Asexual Stages in P. falciparum Malaria.

    Get PDF
    Vaccines that target Plasmodium falciparum gametocytes have the potential to reduce malaria transmission and are thus attractive targets for malaria control. However, very little is known about human immune responses to gametocytes present in human hosts. We evaluated naturally-acquired antibodies to gametocyte-infected erythrocytes (gametocyte-IEs) of different developmental stages compared to other asexual parasite stages among naturally-exposed Kenyan residents. We found that acquired antibodies strongly recognized the surface of mature asexual-IEs, but there was limited reactivity to the surface of gametocyte-IEs of different stages. We used genetically-modified P. falciparum with suppressed expression of PfEMP1, the major surface antigen of asexual-stage IEs, to demonstrate that PfEMP1 is a dominant target of antibodies to asexual-IEs, in contrast to gametocyte-IEs. Antibody reactivity to gametocyte-IEs was similar to asexual-IEs lacking PfEMP1. Significant antibody reactivity to the surface of gametocytes was observed when outside of the host erythrocyte, including recognition of the major gametocyte antigen, Pfs230. This indicates that there is a deficiency of acquired antibodies to gametocyte-IEs despite the acquisition of antibodies to gametocyte antigens and asexual IEs. Our findings suggest that the acquisition of substantial immunity to the surface of gametocyte-IEs is limited, which may facilitate immune evasion to enable malaria transmission even in the face of substantial host immunity to malaria. Further studies are needed to understand the basis for the limited acquisition of antibodies to gametocytes and whether vaccine strategies can generate substantial immunity

    Common Inherited Variation in Mitochondrial Genes Is Not Enriched for Associations with Type 2 Diabetes or Related Glycemic Traits

    Get PDF
    Mitochondrial dysfunction has been observed in skeletal muscle of people with diabetes and insulin-resistant individuals. Furthermore, inherited mutations in mitochondrial DNA can cause a rare form of diabetes. However, it is unclear whether mitochondrial dysfunction is a primary cause of the common form of diabetes. To date, common genetic variants robustly associated with type 2 diabetes (T2D) are not known to affect mitochondrial function. One possibility is that multiple mitochondrial genes contain modest genetic effects that collectively influence T2D risk. To test this hypothesis we developed a method named Meta-Analysis Gene-set Enrichment of variaNT Associations (MAGENTA; http://www.broadinstitute.org/mpg/magenta). MAGENTA, in analogy to Gene Set Enrichment Analysis, tests whether sets of functionally related genes are enriched for associations with a polygenic disease or trait. MAGENTA was specifically designed to exploit the statistical power of large genome-wide association (GWA) study meta-analyses whose individual genotypes are not available. This is achieved by combining variant association p-values into gene scores and then correcting for confounders, such as gene size, variant number, and linkage disequilibrium properties. Using simulations, we determined the range of parameters for which MAGENTA can detect associations likely missed by single-marker analysis. We verified MAGENTA's performance on empirical data by identifying known relevant pathways in lipid and lipoprotein GWA meta-analyses. We then tested our mitochondrial hypothesis by applying MAGENTA to three gene sets: nuclear regulators of mitochondrial genes, oxidative phosphorylation genes, and ∼1,000 nuclear-encoded mitochondrial genes. The analysis was performed using the most recent T2D GWA meta-analysis of 47,117 people and meta-analyses of seven diabetes-related glycemic traits (up to 46,186 non-diabetic individuals). This well-powered analysis found no significant enrichment of associations to T2D or any of the glycemic traits in any of the gene sets tested. These results suggest that common variants affecting nuclear-encoded mitochondrial genes have at most a small genetic contribution to T2D susceptibility

    Common Polymorphisms in MTNR1B, G6PC2 and GCK Are Associated with Increased Fasting Plasma Glucose and Impaired Beta-Cell Function in Chinese Subjects

    Get PDF
    BACKGROUND: Previous studies identified melatonin receptor 1B (MTNR1B), islet-specific glucose 6 phosphatase catalytic subunit-related protein (G6PC2), glucokinase (GCK) and glucokinase regulatory protein (GCKR) as candidate genes for type 2 diabetes (T2D) acting through elevated fasting plasma glucose (FPG). We examined the associations of the reported common variants of these genes with T2D and glucose homeostasis in three independent Chinese cohorts. METHODOLOGY/PRINCIPAL FINDINGS: Five single nucleotide polymorphisms (SNPs), MTNR1B rs10830963, G6PC2 rs16856187 and rs478333, GCK rs1799884 and GCKR rs780094, were genotyped in 1644 controls (583 adults and 1061 adolescents) and 1342 T2D patients. The G-allele of MTNR1B rs10830963 and the C-alleles of both G6PC2 rs16856187 and rs478333 were associated with higher FPG (0.0034<P<6.6x10(-5)) in healthy controls. In addition to our previous report for association with FPG, the A-allele of GCK rs1799884 was also associated with reduced homeostasis model assessment of beta-cell function (HOMA-B) (P=0.0015). Together with GCKR rs780094, the risk alleles of these SNPs exhibited dosage effect in their associations with increased FPG (P=2.9x10(-9)) and reduced HOMA-B (P=1.1x10(-3)). Meta-analyses strongly supported additive effects of MTNR1B rs10830963 and G6PC2 rs16856187 on FPG. CONCLUSIONS/SIGNIFICANCE: Common variants of MTNR1B, G6PC2 and GCK are associated with elevated FPG and impaired insulin secretion, both individually and jointly, suggesting that these risk alleles may precipitate or perpetuate hyperglycemia in predisposed individuals

    Interaction of Pattern Recognition Receptors with Mycobacterium Tuberculosis.

    Get PDF
    Tuberculosis (TB) is considered a major worldwide health problem with 10 million new cases diagnosed each year. Our understanding of TB immunology has become greater and more refined since the identification of Mycobacterium tuberculosis (MTB) as an etiologic agent and the recognition of new signaling pathways modulating infection. Understanding the mechanisms through which the cells of the immune system recognize MTB can be an important step in designing novel therapeutic approaches, as well as improving the limited success of current vaccination strategies. A great challenge in chronic disease is to understand the complexities, mechanisms, and consequences of host interactions with pathogens. Innate immune responses along with the involvement of distinct inflammatory mediators and cells play an important role in the host defense against the MTB. Several classes of pattern recognition receptors (PRRs) are involved in the recognition of MTB including Toll-Like Receptors (TLRs), C-type lectin receptors (CLRs) and Nod-like receptors (NLRs) linked to inflammasome activation. Among the TLR family, TLR1, TLR2, TLR4, and TLR9 and their down-stream signaling proteins play critical roles in the initiation of the immune response in the pathogenesis of TB. The inflammasome pathway is associated with the coordinated release of cytokines such as IL-1Ξ² and IL-18 which also play a role in the pathogenesis of TB. Understanding the cross-talk between these signaling pathways will impact on the design of novel therapeutic strategies and in the development of vaccines and immunotherapy regimes. Abnormalities in PRR signaling pathways regulated by TB will affect disease pathogenesis and need to be elucidated. In this review we provide an update on PRR signaling during M. tuberculosis infection and indicate how greater knowledge of these pathways may lead to new therapeutic opportunities

    Regulation of mTORC1 Signaling by pH

    Get PDF
    BACKGROUND: Acidification of the cytoplasm and the extracellular environment is associated with many physiological and pathological conditions, such as intense exercise, hypoxia and tumourigenesis. Acidification affects important cellular functions including protein synthesis, growth, and proliferation. Many of these vital functions are controlled by mTORC1, a master regulator protein kinase that is activated by various growth-stimulating signals and inactivated by starvation conditions. Whether mTORC1 can also respond to changes in extracellular or cytoplasmic pH and play a role in limiting anabolic processes in acidic conditions is not known. METHODOLOGY/FINDINGS: We examined the effects of acidifying the extracellular medium from pH 7.4 to 6.4 on human breast carcinoma MCF-7 cells and immortalized mouse embryo fibroblasts. Decreasing the extracellular pH caused intracellular acidification and rapid, graded and reversible inhibition of mTORC1, assessed by measuring the phosphorylation of the mTORC1 substrate S6K. Fibroblasts deleted of the tuberous sclerosis complex TSC2 gene, a major negative regulator of mTORC1, were unable to inhibit mTORC1 in acidic extracellular conditions, showing that the TSC1-TSC2 complex is required for this response. Examination of the major upstream pathways converging on the TSC1-TSC2 complex showed that Akt signaling was unaffected by pH but that the Raf/MEK/ERK pathway was inhibited. Inhibition of MEK with drugs caused only modest mTORC1 inhibition, implying that other unidentified pathways also play major roles. CONCLUSIONS: This study reveals a novel role for the TSC1/TSC2 complex and mTORC1 in sensing variations in ambient pH. As a common feature of low tissue perfusion, low glucose availability and high energy expenditure, acidic pH may serve as a signal for mTORC1 to downregulate energy-consuming anabolic processes such as protein synthesis as an adaptive response to metabolically stressful conditions

    Independent impacts of aging on mitochondrial DNA quantity and quality in humans

    Get PDF
    Background The accumulation of mitochondrial DNA (mtDNA) mutations, and the reduction of mtDNA copy number, both disrupt mitochondrial energetics, and may contribute to aging and age-associated phenotypes. However, there are few genetic and epidemiological studies on the spectra of blood mtDNA heteroplasmies, and the distribution of mtDNA copy numbers in different age groups and their impact on age-related phenotypes. In this work, we used whole-genome sequencing data of isolated peripheral blood mononuclear cells (PBMCs) from the UK10K project to investigate in parallel mtDNA heteroplasmy and copy number in 1511 women, between 17 and 85Β years old, recruited in the TwinsUK cohorts. Results We report a high prevalence of pathogenic mtDNA heteroplasmies in this population. We also find an increase in mtDNA heteroplasmies with age (β = 0.011, P = 5.77e-6), and showed that, on average, individuals aged 70-years or older had 58.5% more mtDNA heteroplasmies than those under 40-years old. Conversely, mtDNA copy number decreased by an average of 0.4 copies per year (β =β€‰βˆ’0.395, P = 0.0097). Multiple regression analyses also showed that age had independent effects on mtDNA copy number decrease and heteroplasmy accumulation. Finally, mtDNA copy number was positively associated with serum bicarbonate level (P = 4.46e-5), and inversely correlated with white blood cell count (P = 0.0006). Moreover, the aggregated heteroplasmy load was associated with blood apolipoprotein B level (P = 1.33e-5), linking the accumulation of mtDNA mutations to age-related physiological markers. Conclusions Our population-based study indicates that both mtDNA quality and quantity are influenced by age. An open question for the future is whether interventions that would contribute to maintain optimal mtDNA copy number and prevent the expansion of heteroplasmy could promote healthy aging
    • …
    corecore