246 research outputs found

    The surface energy balance during foehn events at Joyce Glacier, McMurdo Dry Valleys, Antarctica

    Get PDF
    The McMurdo Dry Valleys (MDV) are a polar desert, where glacial melt is the main source of water to streams and the ecosystem. Summer air temperatures are typically close to zero, and therefore foehn events can have a large impact on the meltwater production. A 14-month record of automatic weather station (AWS) data on Joyce Glacier is used to force a 1D surface energy balance model to study the impact of foehn events on the energy balance. AWS data and output of the Antarctic Mesoscale Prediction System (AMPS) on a 1.7 km grid are used to detect foehn events at the AWS site. Foehn events at Joyce Glacier occur under the presence of cyclones over the Ross Sea. The location of Joyce Glacier on the leeward side of the Royal Society Range during these synoptic events causes foehn warming through isentropic drawdown. This mechanism differs from the foehn warming through gap flow that was earlier found for other regions in the MDV and highlights the complex interaction of synoptic flow with local topography of the MDV. Shortwave radiation is the primary control on melt at Joyce Glacier, and melt often occurs with subzero air temperatures. During foehn events, melt rates are enhanced, contributing to 23 % of the total annual melt. Foehn winds cause a switch from a diurnal stability regime in the atmospheric surface layer to a continuous energy input from sensible heat flux throughout the day. The sensible heating during foehn, through an increase in turbulent mixing resulting from gustier and warmer wind conditions, is largely compensated for by extra heat losses through sublimation. Melt rates are enhanced through an additional energy surplus from a reduced albedo during foehn

    Self-regulation of ice flow varies across the ablation area in South-West Greenland

    Get PDF
    The concept of a positive feedback between ice flow and enhanced melt rates in a warmer climate fuelled the debate regarding the temporal and spatial controls on seasonal ice acceleration. Here we combine melt, basal water pressure and ice velocity data. Using 20 years of data covering the whole ablation area, we show that there is not a strong positive correlation between annual ice velocities and melt rates. Annual velocities even slightly decreased with increasing melt. Results also indicate that melt variations are most important for velocity variations in the upper ablation zone up to the equilibrium line altitude. During the extreme melt in 2012, a large velocity response near the equilibrium line was observed, highlighting the possibility of meltwater to have an impact even high on the ice sheet. This may lead to an increase of the annual ice velocity in the region above S9 and requires further monitoring

    Greenland Ice Sheet late-season melt: investigating multi-scale drivers of K-transect events

    Get PDF
    One consequence of recent Arctic warming is an increased occurrence and longer seasonality of above-freezing air temperature episodes.There is significant disagreement in the literature concerning potential physical connectivity between high-latitude open water duration proximate to the Greenland Ice Sheet (GrIS) and unseasonal (i.e. late summer and autumn) GrIS melt events. Here, a new date of sea ice advance (DOA) product is used to determine the occurrence of Baffin Bay sea ice growth along Greenland’s west coast for the 2011–2015 period. For the unseasonal melt period preceding the DOA, northwest Atlantic Ocean and atmospheric conditions are analyzed and linked to unseasonal melt events observed at a series of on-ice automatic weather stations (AWS) along the K-transect in southwest Greenland. Mesoscale and synoptic influences on the above and below freezing surface air temperature events are assessed through analyses of AWS wind, pressure, and humidity observations. These surface observations are further compared against Modèle Atmosphérique Régional (MAR), Regional Atmospheric Climate Model (RACMO2), and ERA-Interim reanalysis fields to understand the airmass origins and (thermo)dynamic drivers of the melt events. Results suggest that the K-transect late season, ablation zone melt events are strongly affected by ridging atmospheric circulation patterns that transport warm, moist air from the sub-polar North Atlantic toward west Greenland. While thermal conduction and advection off south Baffin Bayopen waters impact coastal air temperatures, consistent with previous studies, marine air incursions from Baffin Bay onto the ice sheet are obstructed by barrier flows and the pressure gradient-driven katabatic regime along the western GrIS margin

    Особливості урбаністичного хронотопу в поезіях літугруповання “Бу-Ба-Бу”

    Get PDF
    Стаття присвячена дослідженню особливостей урбаністичного хронотопу в поезіях Ю. Андруховича, О. Ірванця, В. Неборака. Встановлено, що характерними модифікаціями урбаністичного хронотопу у творчості Ю. Андруховича є топографічний хронотоп із домінантами Львова й Станіслава та карнавалізоване Місто; у поезіях В. Неборака варіації урбаністичного хронотопу створюються за допомогою використання традиційних атрибутів міста, а також власне міських прошарків населення; урбаністичний хронотоп у поезіях О. Ірванця є найменше матеріалізованим і тяжіє до психологічно-метафізичного. Ключові слова: часопростір, хронотоп, топос, урбанізм, карнавалізація.Статья посвящена изучению особенностей урбанистического хронотопа в поэзиях Ю. Андруховича, А. Ирванца, В. Неборака. Так, в творчестве Ю. Андруховича были выявлены такие модификации урбанистического хронотопа, как топографический с доминантами Львова и Станислава и карнавальный Город; в поэзиях В. Неборака вариации урбанистического хронотопа осуществляются при помощи использования традиционных атрибутов города, а также собственно городских слоев населения; урбанистический хронотоп поэзий А. Ирванца наименее материализован и тяготеет к психологически-метафизическому. Ключевые слова: пространственно-временное единство, хронотоп, топос, урбанистичность, карнавальность.The article is dedicated to the study of the urbanism chronotope’s particularities in Yu. Andruhovicha, A. Irvanca, V. Neboraka poetry. So in Yu. Andruhovich’s work. Such modification urbanism chronotope as topographical one with the Livov and Stanislav’s dominant and the carnival one. In V. Neboraka’s variations of urbanism chronotope are realized using the traditional city attributes and town population layers as well. A. Irvanc’s poetry urbanism chronotope is less materialired and strongly attracted by psychological-metaphysical one. Keywords: space-time unity, chronotope, urbanism, carnivalization

    Mapping the aerodynamic roughness of the Greenland Ice Sheet surface using ICESat-2: evaluation over the K-transect

    Get PDF
    The aerodynamic roughness of heat, moisture, and momentum of a natural surface are important parameters in atmospheric models, as they co-determine the intensity of turbulent transfer between the atmosphere and the surface. Unfortunately this parameter is often poorly known, especially in remote areas where neither high-resolution elevation models nor eddy-covariance measurements are available. In this study we adapt a bulk drag partitioning model to estimate the aerodynamic roughness length (z0m) such that it can be applied to 1D (i.e. unidirectional) elevation profiles, typically measured by laser altimeters. We apply the model to a rough ice surface on the K-transect (west Greenland Ice Sheet) using UAV photogrammetry, and we evaluate the modelled roughness against in situ eddy-covariance observations. We then present a method to estimate the topography at 1 m horizontal resolution using the ICESat-2 satellite laser altimeter, and we demonstrate the high precision of the satellite elevation profiles against UAV photogrammetry. The currently available satellite profiles are used to map the aerodynamic roughness during different time periods along the K-transect, that is compared to an extensive dataset of in situ observations. We find a considerable spatio-temporal variability in z0m, ranging between 10−4 m for a smooth snow surface and 10−1 m for rough crevassed areas, which confirms the need to incorporate a variable aerodynamic roughness in atmospheric models over ice sheets.</p

    The AntAWS dataset: a compilation of Antarctic automatic weather station observations

    Get PDF
    A new meteorological dataset derived from records of Antarctic automatic weather stations (here called the AntAWS dataset) at 3 h, daily and monthly resolutions including quality control information is presented here. This dataset integrates the measurements of air temperature, air pressure, relative humidity, and wind speed and direction from 267 Antarctic AWSs obtained from 1980 to 2021. The AWS spatial distribution remains heterogeneous, with the majority of instruments located in near-coastal areas and only a few inland on the East Antarctic Plateau. Among these 267 AWSs, 63 have been operating for more than 20 years and 27 of them in excess of more than 30 years. Of the five meteorological parameters, the measurements of air temperature have the best continuity and the highest data integrity. The overarching aim of this comprehensive compilation of AWS observations is to make these data easily and widely accessible for efficient use in local, regional and continental studies; it may be accessed at 10.48567/key7-ch19 (Wang et al., 2022). This dataset is invaluable for improved characterization of the surface climatology across the Antarctic continent, to improve our understanding of Antarctic surface snow-Atmosphere interactions including precipitation events associated with atmospheric rivers and to evaluate regional climate models or meteorological reanalysis products

    The AntAWS dataset: a compilation of Antarctic automatic weather station observations

    Get PDF
    A new meteorological dataset derived from records of Antarctic automatic weather stations (here called the AntAWS dataset) at 3 h, daily and monthly resolutions including quality control information is presented here. This dataset integrates the measurements of air temperature, air pressure, relative humidity, and wind speed and direction from 267 Antarctic AWSs obtained from 1980 to 2021. The AWS spatial distribution remains heterogeneous, with the majority of instruments located in near-coastal areas and only a few inland on the East Antarctic Plateau. Among these 267 AWSs, 63 have been operating for more than 20 years and 27 of them in excess of more than 30 years. Of the five meteorological parameters, the measurements of air temperature have the best continuity and the highest data integrity. The overarching aim of this comprehensive compilation of AWS observations is to make these data easily and widely accessible for efficient use in local, regional and continental studies; it may be accessed at https://doi.org/10.48567/key7-ch19 (Wang et al., 2022). This dataset is invaluable for improved characterization of the surface climatology across the Antarctic continent, to improve our understanding of Antarctic surface snow–atmosphere interactions including precipitation events associated with atmospheric rivers and to evaluate regional climate models or meteorological reanalysis products
    corecore