9 research outputs found

    First analysis of the Severe Paediatric Asthma Collaborative in Europe registry.

    Get PDF
    New biologics are being continually developed for paediatric asthma, but it is unclear whether there are sufficient numbers of children in Europe with severe asthma and poor control to recruit to trials needed for registration. To address these questions, the European Respiratory Society funded the Severe Paediatric Asthma Collaborative in Europe (SPACE), a severe asthma registry. We report the first analysis of the SPACE registry, which includes data from 10 paediatric respiratory centres across Europe. Data from 80 children with a clinical diagnosis of severe asthma who were receiving both high-dose inhaled corticosteroid and long-acting β2-agonist were entered into the registry between January 2019 and January 2020. Suboptimal control was defined by either asthma control test, or Global Initiative for Asthma criteria, or ≥2 severe exacerbations in the previous 12 months, or a combination. Overall, 62 out of 80 (77%) children had suboptimal asthma control, of whom 29 were not prescribed a biologic. However, in 24 there was an option for starting a licensed biologic. 33 children with suboptimal control were prescribed a biologic (omalizumab (n=24), or mepolizumab (n=7), or dupilumab (n=2)), and for 29 there was an option to switch to a different biologic. We conclude that the SPACE registry provides data that will support the planning of studies of asthma biologics. Not all children on biologics achieve good asthma control, and there is need for new trial designs addressing biologic switching

    Comparison of broad range 16S rDNA PCR and conventional blood culture for diagnosis of sepsis in the newborn: a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early onset bacterial sepsis is a feared complication of the newborn. A large proportion of infants admitted to the Neonatal Intensive Care Unit (NICU) for suspected sepsis receive treatment with potent systemic antibiotics while a diagnostic workup is in progress. The gold standard for detecting bacterial sepsis is blood culture. However, as pathogens in blood cultures are only detected in approximately 25% of patients, the sensitivity of blood culture is suspected to be low. Therefore, the diagnosis of sepsis is often based on the development of clinical signs, in combination with laboratory tests such as a rise in C – reactive protein (CRP). Molecular assays for the detection of bacterial DNA in the blood represent possible new diagnostic tools for early identification of a bacterial cause.</p> <p>Methods</p> <p>A broad range 16S rDNA polymerase chain reaction (PCR) without preincubation was compared to conventional diagnostic work up for clinical sepsis, including BACTEC blood culture, for early determination of bacterial sepsis in the newborn. In addition, the relationship between known risk factors, clinical signs, and laboratory parameters considered in clinical sepsis in the newborn were explored.</p> <p>Results</p> <p>Forty-eight infants with suspected sepsis were included in this study. Thirty-one patients were diagnosed with sepsis, only 6 of these had a positive blood culture. 16S rDNA PCR analysis of blinded blood samples from the 48 infants revealed 10 samples positive for the presence of bacterial DNA. PCR failed to be positive in 2 samples from blood culture positive infants, and was positive in 1 sample where a diagnosis of a non-septic condition was established. Compared to blood culture the diagnosis of bacterial proven sepsis by PCR revealed a 66.7% sensitivity, 87.5% specificity, 95.4% positive and 75% negative predictive value. PCR combined with blood culture revealed bacteria in 35.1% of the patients diagnosed with sepsis. Irritability and feeding difficulties were the clinical signs most often observed in sepsis. CRP increased in the presence of bacterial infection.</p> <p>Conclusion</p> <p>There is a need for PCR as a method to quickly point out the infants with sepsis. However, uncertainty about a bacterial cause of sepsis was not reduced by the PCR result, reflecting that methodological improvements are required in order for DNA detection to replace or supplement traditional blood culture in diagnosis of bacterial sepsis.</p

    High-dose oral immunotherapy in children with anaphylaxis to peanut

    No full text
    Peanut allergy is common, and the main cause of life-threatening allergic reactions among children in the Western world. Concern for accidental exposure may reduce quality of life (QoL). In allergen specific immunotherapy, initial exposure of a very low allergen dose is followed by incremental amounts of the culprit allergen until a maintenance dose is reached. Trials of oral immunotherapy (OIT) report successful desensitization (increased reactivity threshold to the allergen during treatment) with acceptable safety profiles. Paradoxically, children with severe peanut allergy, thought to benefit the most from a successful treatment, are often excluded from trials due to the risk of anaphylaxis. The main objective of the present thesis was to determine the feasibility and effect of two years’ OIT in children with anaphylaxis to peanut. In the prospective, open labelled 4-year high-dose peanut OIT TAKE-AWAY trial, 57 children were randomized to OIT and 20 to observation only. Immunological tests, QoL-questionnaires and food challenge were performed at inclusion and after two years of treatment. In children with anaphylaxis to peanut, 24.6 % were deemed ineligible to OIT due to very low reactivity thresholds. Up-dosing was completed by 75.5 % with maintenance doses ranging from 250 to 5000 mg peanut protein (ppt), while 21.1 % only reached the pre-defined maximum maintenance dose (MMD) of 5000 mg ppt. The main reason for not reaching MMD was distaste for peanuts, followed by adverse events. Every fifth child experienced an anaphylactic adverse event, questioning the feasibility and safety of high-dose OIT in these patients. After two years of OIT, desensitization to 7500 mg ppt was confirmed in 94.6 % of the children. The QoL in children improved as reported by the parents, but not by the children. Hence, parents’ apparent over estimation of their child’s improvement in QoL by OIT, should be considered if such treatment is to be offered for peanut allergy

    Unsupervised field-based exercise challenge tests to support the detection of exercise-induced lower airway dysfunction in athletes

    No full text
    Background Athletes are at risk for developing exercise-induced lower airway narrowing. The diagnostic assessment of such lower airway dysfunction (LAD) requires an objective bronchial provocation test (BPT).Objectives Our primary aim was to assess if unsupervised field-based exercise challenge tests (ECTs) could confirm LAD by using app-based spirometry. We also aimed to evaluate the diagnostic test performance of field-based and sport-specific ECTs, compared with established eucapnic voluntary hyperpnoea (EVH) and methacholine BPT.Methods In athletes with LAD symptoms, sensitivity and specificity analyses were performed to compare outcomes of (1) standardised field-based 8 min ECT at 85% maximal heart rate with forced expiratory volume in 1 s (FEV1) measured prechallenge and 1 min, 3 min, 5 min, 10 min, 15 min and 30 min postchallenge, (2) unstandardised field-based sport-specific ECT with FEV1 measured prechallenge and within 10 min postchallenge, (3) EVH and (4) methacholine BPT.Results Of 60 athletes (median age 17.5; range 16–28 years.; 40% females), 67% performed winter-sports, 43% reported asthma diagnosis. At least one positive BPT was observed in 68% (n=41/60), with rates of 51% (n=21/41) for standardised ECT, 49% (n=20/41) for unstandardised ECT, 32% (n=13/41) for EVH and methacholine BPT, while both standardised and unstandardised ECTs were simultaneously positive in only 20% (n=7/35). Standardised and unstandardised ECTs confirmed LAD with 54% sensitivity and 70% specificity, and 46% sensitivity and 68% specificity, respectively, using EVH as a reference, while EVH and methacholine BPT were both 33% sensitive and 85% specific, using standardised ECTs as reference.Conclusion App-based spirometry for unsupervised field-based ECTs may support the diagnostic process in athletes with LAD symptoms.Trial registration number NCT04275648

    International Olympic Committee (IOC) consensus statement on acute respiratory illness in athletes part 1: acute respiratory infections

    Get PDF
    International audienceAcute illnesses affecting the respiratory tract are common and form a significant component of the work of Sport and Exercise Medicine (SEM) clinicians. Acute respiratory illness (ARill) can broadly be classified as non-infective ARill and acute respiratory infections (ARinf). The aim of this consensus is to provide the SEM clinician with an overview and practical clinical approach to ARinf in athletes. The International Olympic Committee (IOC) Medical and Scientific Commission appointed an international consensus group to review ARill (non-infective ARill and ARinf) in athletes. Six subgroups of the IOC Consensus group were initially established to review the following key areas of ARill in athletes: (1) epidemiology/risk factors for ARill, (2) ARinf, (3) non-infective ARill including ARill due to environmental exposure, (4) acute asthma and related conditions, (5) effects of ARill on exercise/sports performance, medical complications/return-to-sport and (6) acute nasal/vocal cord dysfunction presenting as ARill. Several systematic and narrative reviews were conducted by IOC consensus subgroups, and these then formed the basis of sections in the consensus documents. Drafting and internal review of sections were allocated to ‘core’ members of the consensus group, and an advanced draft of the consensus document was discussed during a meeting of the main consensus core group in Lausanne, Switzerland on 11 to 12 October 2021. Final edits were completed after the meeting. This consensus document (part 1) focusses on ARinf, which accounts for the majority of ARill in athletes. The first section of this consensus proposes a set of definitions and classifications of ARinf in athletes to standardise future data collection and reporting. The remainder of the consensus paper examines a wide range of clinical considerations related to ARinf in athletes: epidemiology, risk factors, pathology/pathophysiology, clinical presentation and diagnosis, management, prevention, medical considerations, risks of infection during exercise, effects of infection on exercise/sports performance and return-to-sport guidelines

    International Olympic Committee (IOC) consensus statement on acute respiratory illness in athletes part 2: non-infective acute respiratory illness

    No full text
    International audienceAcute respiratory illness (ARill) is common and threatens the health of athletes. ARill in athletes forms a significant component of the work of Sport and Exercise Medicine (SEM) clinicians. The aim of this consensus is to provide the SEM clinician with an overview and practical clinical approach to non-infective ARill in athletes. The International Olympic Committee (IOC) Medical and Scientific Committee appointed an international consensus group to review ARill in athletes. Key areas of ARill in athletes were originally identified and six subgroups of the IOC Consensus group established to review the following aspects: (1) epidemiology/risk factors for ARill, (2) infective ARill, (3) non-infective ARill, (4) acute asthma/exercise-induced bronchoconstriction and related conditions, (5) effects of ARill on exercise/sports performance, medical complications/return-to-sport (RTS) and (6) acute nasal/laryngeal obstruction presenting as ARill. Following several reviews conducted by subgroups, the sections of the consensus documents were allocated to ‘core’ members for drafting and internal review. An advanced draft of the consensus document was discussed during a meeting of the main consensus core group, and final edits were completed prior to submission of the manuscript. This document (part 2) of this consensus focuses on respiratory conditions causing non-infective ARill in athletes. These include non-inflammatory obstructive nasal, laryngeal, tracheal or bronchial conditions or non-infective inflammatory conditions of the respiratory epithelium that affect the upper and/or lower airways, frequently as a continuum. The following aspects of more common as well as lesser-known non-infective ARill in athletes are reviewed: epidemiology, risk factors, pathology/pathophysiology, clinical presentation and diagnosis, management, prevention, medical considerations and risks of illness during exercise, effects of illness on exercise/sports performance and RTS guidelines

    International Olympic Committee (IOC) consensus statement on acute respiratory illness in athletes part 1 : acute respiratory infections

    Get PDF
    Acute illnesses affecting the respiratory tract are common and form a significant component of the work of Sport and Exercise Medicine (SEM) clinicians. Acute respiratory illness (ARill) can broadly be classified as non-infective ARill and acute respiratory infections (ARinf). The aim of this consensus is to provide the SEM clinician with an overview and practical clinical approach to ARinf in athletes. The International Olympic Committee (IOC) Medical and Scientific Commission appointed an international consensus group to review ARill (non-infective ARill and ARinf) in athletes. Six subgroups of the IOC Consensus group were initially established to review the following key areas of ARill in athletes: (1) epidemiology/risk factors for ARill, (2) ARinf, (3) non-infective ARill including ARill due to environmental exposure, (4) acute asthma and related conditions, (5) effects of ARill on exercise/sports performance, medical complications/return-to-sport and (6) acute nasal/vocal cord dysfunction presenting as ARill. Several systematic and narrative reviews were conducted by IOC consensus subgroups, and these then formed the basis of sections in the consensus documents. Drafting and internal review of sections were allocated to ‘core’ members of the consensus group, and an advanced draft of the consensus document was discussed during a meeting of the main consensus core group in Lausanne, Switzerland on 11 to 12 October 2021. Final edits were completed after the meeting. This consensus document (part 1) focusses on ARinf, which accounts for the majority of ARill in athletes. The first section of this consensus proposes a set of definitions and classifications of ARinf in athletes to standardise future data collection and reporting. The remainder of the consensus paper examines a wide range of clinical considerations related to ARinf in athletes: epidemiology, risk factors, pathology/pathophysiology, clinical presentation and diagnosis, management, prevention, medical considerations, risks of infection during exercise, effects of infection on exercise/sports performance and return-to-sport guidelines.http://bjsm.bmj.comhj2023Sports Medicin
    corecore