1,110 research outputs found
Experimental investigation of circumferentially non-uniform heat flux on the heat transfer coefficient in a smooth horizontal tube with buoyancy driven secondary flow
Most heat transfer tubes are designed for either fully uniform wall temperature or fully uniform wall
heat flux boundary conditions under forced convection. Several applications, including but not limited
to the solar collectors of renewable energy systems, do however operate with non-uniform boundary
conditions. Limited research has been conducted on non-uniform wall heat flux heat transfer
coefficients in circular tubes, especially for mixed convection conditions. Such works are normally
numerical in nature and little experimental work is available. In this experimental investigation the
effects of the circumferential heat flux distribution and heat flux intensity on the single phase (liquid)
internal heat transfer coefficient were considered for a horizontal circular tube. Focus was placed on
the laminar flow regime of water within a stainless steel tube with an inner diameter of 27.8 mm and
a length to diameter ratio of 72. Different outer wall heat flux conditions, including fully uniform and
partially uniform heat fluxes were studied for Reynolds numbers ranging from 650 to 2 600 and a
Prandtl number range of 4 to 7. The heat flux conditions included 360˚ (uniform) heating, lower 180˚
heating, upper 180˚ heating, 180˚ left and right hemispherical heating, lower 90˚ heating, upper 90˚
heating and slanted 180˚ heating. Depending on the angle span of the heating, local heat fluxes of 6
631 W/m2
, 4 421 W/m2
, 3 316 W/m2
, 2 210 W/m2
and 1 658 W/m2 were applied. Results indicate that
the local and average steady state Nusselt numbers are greatly influenced by the applied heat flux
position and intensity. Highest average heat transfer coefficients were achieved for case where the
applied heat flux was positioned on the lower half (in terms of gravity) of the tubes circumference,
while the lowest heat transfer coefficients were achieved when the heating was applied to the upper
half of the tube. Variations in the heat transfer coefficient were found to be due to the secondary
buoyancy induced flow effect. The relative thermal performance of the different heating scenarios
where characterised and described by means of newly developed heat transfer coefficient
correlations for fully uniform heating, lower 180° heating, and upper 180° heating.Dissertation (MEng)--University of Pretoria, 2018.Mechanical and Aeronautical EngineeringMEngUnrestricte
The equine sarcoid : molecular and epidemiological studies in Equus asinus
The aim of this project was to investigate some aspects of the equine sarcoid of the donkey (Equus asinus). The study was undertaken in a large population of animals located at The Donkey Sanctuary, Sidford, Devon, in order to assess the feasibility of eventual vaccination against the disease. All material was derived from clinical cases and no animal experimentation was involved in the investigation.
The epidemiological studies were based upon information exported from the clinical records maintained on The Donkey Sanctuary mainframe computer. Of those donkeys developing sarcoids at The Sanctuary, the sex, age, age at which the animal entered The Sanctuary and the duration of stay were all shown to be factors affecting the likelihood of an individual donkey having sarcoids. In general, the disease was most likely to affect young male donkeys within the first four years at The Sanctuary and the tumours were most frequently observed in the paragenital region. A general linear model was constructed and it was demonstrated that male donkeys were, at best 1.1 times and, at worst 4.5 times more likely to have sarcoids than females. The disease model was then used as a management tool for the indentification of animals at the highest risk of developing sarcoids, in order to effect more prompt therapeutic intervention.
The serological status of donkeys at The Sanctuary was investigated by the immunoblot assay of sera from sarcoid-affected and clinically-normal donkeys for the presence of antibody to disrupted bovine papillomavirus type 2 (BPV-2) virion and to the L1 open reading frame (ORF) encoded fusion protein. Antibody to the antigenic targets was demonstrated in 86 per cent of donkeys in the case of the L1 fusion protein and 96 per cent of donkeys in the case of disrupted virion; there was no correlation between the presence of antibody and clinical status. The antibody detected by immunoblot was unable to neutralise the transforming activity of BPV-2 in vitro
Optimal States for Bell inequality Violations using Quadrature Phase Homodyne Measurements
We identify what ideal correlated photon number states are to required to
maximize the discrepancy between local realism and quantum mechanics when a
quadrature homodyne phase measurement is used. Various Bell inequality tests
are considered.Comment: 6 pages, 5 Figure
Experimental investigation of circumferentially non-uniform heat flux on the heat transfer coefficient in a smooth horizontal tube with buoyancy driven secondary flow
In this experimental investigation the influence of non-uniform heat flux distributions on the internal heat transfer coefficient in a horizontal circular tube was studied for liquid water. The tube had an inner diameter of 27.8 mm and a length to diameter ratio of 72. Different outer wall heat flux conditions were studied for Reynolds numbers ranging from 650 to 2600 at a Prandtl number of approximately 6.5. Heat flux distributions included fully uniform heating (which had a circumferential angle span of 360°) and different partial uniform heat flux distributions with angle spans of 180° or 90° at different circumferential positions. Depending on the angle span, local heat flux intensities ranging from 1658 W/m2 to 6631 W/m2 were tested. Results indicate that the average steady state Nusselt number is greatly influenced by the applied heat flux position and intensity. Highest average heat transfer coefficients were achieved for cases where the applied heat flux was positioned on the lower half (in terms of gravity) of the tube circumference, while the lowest heat transfer coefficients were achieved when the heating was applied to the upper half of the tube. Smaller angle spans produced lower heat transfer coefficients. The relative thermal performance of the different heating scenarios where characterised and described by means of newly developed heat transfer coefficient correlations for angle spans of 180° and 90° which correlated 92% and 96% of the data respectively within 3% of the measured Nusselt number.The National Research Foundation ( NRF ), Eskom Tertiary Education Support Programme ( TESP ), University of Stellenbosch/University of Pretoria , South African National Energy Research Institute ( SANERI )/South African National Energy Development Institute ( SANEDI ), Council for Scientific and Industrial Research ( CSIR ), Energy Efficiency and Demand Side Management ( EEDSM ) Hub and NAC.http://www.elsevier.com/locate/etfs2019-11-01hj2019Mechanical and Aeronautical Engineerin
Robust Neutrino Constraints by Combining Low Redshift Observations with the CMB
We illustrate how recently improved low-redshift cosmological measurements
can tighten constraints on neutrino properties. In particular we examine the
impact of the assumed cosmological model on the constraints. We first consider
the new HST H0 = 74.2 +/- 3.6 measurement by Riess et al. (2009) and the
sigma8*(Omegam/0.25)^0.41 = 0.832 +/- 0.033 constraint from Rozo et al. (2009)
derived from the SDSS maxBCG Cluster Catalog. In a Lambda CDM model and when
combined with WMAP5 constraints, these low-redshift measurements constrain sum
mnu<0.4 eV at the 95% confidence level. This bound does not relax when allowing
for the running of the spectral index or for primordial tensor perturbations.
When adding also Supernovae and BAO constraints, we obtain a 95% upper limit of
sum mnu<0.3 eV. We test the sensitivity of the neutrino mass constraint to the
assumed expansion history by both allowing a dark energy equation of state
parameter w to vary, and by studying a model with coupling between dark energy
and dark matter, which allows for variation in w, Omegak, and dark coupling
strength xi. When combining CMB, H0, and the SDSS LRG halo power spectrum from
Reid et al. 2009, we find that in this very general model, sum mnu < 0.51 eV
with 95% confidence. If we allow the number of relativistic species Nrel to
vary in a Lambda CDM model with sum mnu = 0, we find Nrel =
3.76^{+0.63}_{-0.68} (^{+1.38}_{-1.21}) for the 68% and 95% confidence
intervals. We also report prior-independent constraints, which are in excellent
agreement with the Bayesian constraints.Comment: 19 pages, 6 figures, submitted to JCAP; v2: accepted version. Added
section on profile likelihood for Nrel, improved plot
The dark side of curvature
Geometrical tests such as the combination of the Hubble parameter H(z) and
the angular diameter distance d_A(z) can, in principle, break the degeneracy
between the dark energy equation of state parameter w(z), and the spatial
curvature Omega_k in a direct, model-independent way. In practice, constraints
on these quantities achievable from realistic experiments, such as those to be
provided by Baryon Acoustic Oscillation (BAO) galaxy surveys in combination
with CMB data, can resolve the cosmic confusion between the dark energy
equation of state parameter and curvature only statistically and within a
parameterized model for w(z). Combining measurements of both H(z) and d_A(z) up
to sufficiently high redshifts around z = 2 and employing a parameterization of
the redshift evolution of the dark energy equation of state are the keys to
resolve the w(z)-Omega_k degeneracy.Comment: 18 pages, 9 figures. Minor changes, matches version accepted in JCA
Single-field inflation constraints from CMB and SDSS data
We present constraints on canonical single-field inflation derived from WMAP
five year, ACBAR, QUAD, BICEP data combined with the halo power spectrum from
SDSS LRG7. Models with a non-scale-invariant spectrum and a red tilt n_s < 1
are now preferred over the Harrison-Zel'dovich model (n_s = 1, tensor-to-scalar
ratio r = 0) at high significance. Assuming no running of the spectral indices,
we derive constraints on the parameters (n_s, r) and compare our results with
the predictions of simple inflationary models. The marginalised credible
intervals read n_s = 0.962^{+0.028}_{-0.026} and r < 0.17 (at 95% confidence
level). Interestingly, the 68% c.l. contours favour mainly models with a convex
potential in the observable region, but the quadratic potential model remains
inside the 95% c.l. contours. We demonstrate that these results are robust to
changes in the datasets considered and in the theoretical assumptions made. We
then consider a non-vanishing running of the spectral indices by employing
different methods, non-parametric but approximate, or parametric but exact.
With our combination of CMB and LSS data, running models are preferred over
power-law models only by a Delta chi^2 ~ 5.8, allowing inflationary stages
producing a sizable negative running -0.063^{+0.061}_{-0.049} and larger
tensor-scalar ratio r < 0.33 at the 95% c.l. This requires large values of the
third derivative of the inflaton potential within the observable range. We
derive bounds on this derivative under the assumption that the inflaton
potential can be approximated as a third order polynomial within the observable
range.Comment: 32 pages, 7 figures. v2: additional references, some typos corrected,
passed to JCAP style. v3: minor changes, matches published versio
A novel determination of the local dark matter density
We present a novel study on the problem of constructing mass models for the
Milky Way, concentrating on features regarding the dark matter halo component.
We have considered a variegated sample of dynamical observables for the Galaxy,
including several results which have appeared recently, and studied a 7- or
8-dimensional parameter space - defining the Galaxy model - by implementing a
Bayesian approach to the parameter estimation based on a Markov Chain Monte
Carlo method. The main result of this analysis is a novel determination of the
local dark matter halo density which, assuming spherical symmetry and either an
Einasto or an NFW density profile is found to be around 0.39 GeV cm with
a 1- error bar of about 7%; more precisely we find a for the Einasto profile and for the NFW. This is in contrast to the
standard assumption that is about 0.3 GeV cm with an
uncertainty of a factor of 2 to 3. A very precise determination of the local
halo density is very important for interpreting direct dark matter detection
experiments. Indeed the results we produced, together with the recent accurate
determination of the local circular velocity, should be very useful to
considerably narrow astrophysical uncertainties on direct dark matter
detection.Comment: 31 pages,11 figures; minor changes in the text; two figures adde
Predicting patterns of service utilization within children\u27s mental health agencies
Background: Some children with mental health (MH) problems have been found to receive ongoing care, either continuously or episodically. We sought to replicate patterns of MH service use over extended time periods, and test predictors of these patterns. Methods: Latent class analyses were applied to 4 years of visit data from five MH agencies and nearly 6000 children, 4-to 13-years-old at their first visit. Results: Five patterns of service use were identified, replicating previous findings. Overall, 14% of cases had two or more episodes of care and 23% were involved for more than 2 years. Most children (53%) were seen for just a few visits within a few months. Two patterns represented cases with two or more episodes of care spanning multiple years. In the two remaining patterns, children tended to have just one episode of care, but the number of sessions and length of involvement varied. Using discriminant function analyses, we were able to predict with just over 50% accuracy children\u27s pattern of service use. Severe externalizing behaviors, high impairment, and high family burden predicted service use patterns with long durations of involvement and frequent visits. Conclusions: Optimal treatment approaches for children seen for repeated episodes of care or for care lasting multiple years need to be developed. Children with the highest level of need (severe pathology, impairment, and burden) are probably best served by providing high intensity services at the start of care
- …