330 research outputs found

    Alkali vapor pressure modulation on the 100ms scale in a single-cell vacuum system for cold atom experiments

    Full text link
    We describe and characterize a device for alkali vapor pressure modulation on the 100ms timescale in a single-cell cold atom experiment. Its mechanism is based on optimized heat conduction between a current-modulated alkali dispenser and a heat sink at room temperature. We have studied both the short-term behavior during individual pulses and the long-term pressure evolution in the cell. The device combines fast trap loading and relatively long trap lifetime, enabling high repetition rates in a very simple setup. These features make it particularly suitable for portable atomic sensors.Comment: One reference added, one correcte

    Stability of a trapped atom clock on a chip

    Full text link
    We present a compact atomic clock interrogating ultracold 87Rb magnetically trapped on an atom chip. Very long coherence times sustained by spin self-rephasing allow us to interrogate the atomic transition with 85% contrast at 5 s Ramsey time. The clock exhibits a fractional frequency stability of 5.8×10−135.8\times 10^{-13} at 1 s and is likely to integrate into the 1×10−151\times10^{-15} range in less than a day. A detailed analysis of 7 noise sources explains the measured frequency stability. Fluctuations in the atom temperature (0.4 nK shot-to-shot) and in the offset magnetic field (5×10−65\times10^{-6} relative fluctuations shot-to-shot) are the main noise sources together with the local oscillator, which is degraded by the 30% duty cycle. The analysis suggests technical improvements to be implemented in a future second generation set-up. The results demonstrate the remarkable degree of technical control that can be reached in an atom chip experiment.Comment: 12 pages, 11 figure

    Spin waves and Collisional Frequency Shifts of a Trapped-Atom Clock

    Full text link
    We excite spin-waves with spatially inhomogeneous pulses and study the resulting frequency shifts of a chip-scale atomic clock of trapped 87^{87}Rb. The density-dependent frequency shifts of the hyperfine transition simulate the s-wave collisional frequency shifts of fermions, including those of optical lattice clocks. As the spin polarizations oscillate in the trap, the frequency shift reverses and it depends on the area of the second Ramsey pulse, exhibiting a predicted beyond mean-field frequency shift. Numerical and analytic models illustrate the observed behaviors.Comment: Will appear soon in Physical Review Letters - Typos correcte

    Pitfalls in efficacy testing – how important is the validation of neutralization of chlorhexidine digluconate?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Effective neutralization of active agents is essential to obtain valid efficacy results, especially when non-volatile active agents like chlorhexidine digluconate (CHG) are tested. The aim of this study was to determine an effective and non-toxic neutralizing mixture for a propan-1-ol solution containing 2% CHG.</p> <p>Methods</p> <p>Experiments were carried out according to ASTM E 1054-02. The neutralization capacity was tested separately with five challenge microorganisms in suspension, and with a rayon swab carrier. Either 0.5 mL of the antiseptic solution (suspension test) or a saturated swab with the antiseptic solution (carrier test) was added to tryptic soy broth containing neutralizing agents. After the samples were mixed, aliquots were spread immediately and after 3 h of storage at 2 – 8°C onto tryptic soy agar containing a neutralizing mixture.</p> <p>Results</p> <p>The neutralizer was, however, not consistently effective in the suspension test. Immediate spread yielded a valid neutralization with <it>Staphylococcus aureus, Staphylococcus epidermidis </it>and <it>Corynebacterium jeikeium </it>but not with <it>Micrococcus luteus </it>(p < 0.001) and <it>Candida albicans </it>(p < 0.001). A 3-h storage period of the neutralized active agents in suspension resulted in significant carry-over activity of CHG in addition against <it>Staphylococcus epidermidis </it>(p < 0.001) and <it>Corynebacterium jeikeium </it>(p = 0.044). In the carrier test, the neutralizing mixture was found to be effective and non toxic to all challenge microorganisms when spread immediately. However, after 3 h storage of the neutralized active agents significant carry-over activity of CHG against <it>Micrococcus luteus </it>(p = 0.004; Tukey HSD) was observed.</p> <p>Conclusion</p> <p>Without effective neutralization in the sampling fluid, non-volatile active ingredients will continue to reduce the number of surviving microorganisms after antiseptic treatment even if the sampling fluid is kept cold straight after testing. This can result in false-positive antiseptic efficacy data. Attention should be paid during the neutralization validation process to the amount of antiseptic solution, the storage time and to the choice of appropriate and sensitive microorganisms.</p

    Millimeter-long Fiber Fabry-Perot cavities

    Full text link
    We demonstrate fiber Fabry-Perot (FFP) cavities with concave mirrors that can be operated at cavity lengths as large as 1.5mm without significant deterioration of the finesse. This is achieved by using a laser dot machining technique to shape spherical mirrors with ultralow roughness and employing single-mode fibers with large mode area for good mode matching to the cavity. Additionally, in contrast to previous FFPs, these cavities can be used over an octave-spanning frequency range with adequate coatings. We also show directly that shape deviations caused by the fiber's index profile lead to a finesse decrease as observed in earlier attempts to build long FFP cavities, and show a way to overcome this problem

    Ccl2 and Ccl3 Mediate Neutrophil Recruitment via Induction of Protein Synthesis and Generation of Lipid Mediators

    Get PDF
    Objective: Although the chemokines monocyte chemoattractant protein-1 (Ccl2/JE/MCP-1) and macrophage inflammatory protein-1α (Ccl3/MIP-1α) have recently been implicated in neutrophil migration, the underlying mechanisms remain largely unclear. Methods and Results: Stimulation of the mouse cremaster muscle with Ccl2/JE/MCP-1 or Ccl3/MIP-1α induced a significant increase in numbers of firmly adherent and transmigrated leukocytes (>70% neutrophils) as observed by in vivo microscopy. This increase was significantly attenuated in mice receiving an inhibitor of RNA transcription (actinomycin D) or antagonists of platelet activating factor (PAF; BN 52021) and leukotrienes (MK-886; AA-861). In contrast, leukocyte responses elicited by PAF and leukotriene-B4 (LTB4) themselves were not affected by actinomycin D, BN 52021, MK-886, or AA-861. Conversely, PAF and LTB4, but not Ccl2/JE/MCP-1 and Ccl3/MIP-1α, directly activated neutrophils as indicated by shedding of CD62L and marked upregulation of CD11b. Moreover, Ccl2/JE/ MCP-1- and Ccl3/MIP-1α-elicited leakage of fluorescein isothiocyanate dextran as well as collagen IV remodeling within the venular basement membrane were completely absent in neutrophil-depleted mice. Conclusions: Ccl2/JE/MCP-1 and Ccl3/MIP-1α mediate firm adherence and (subsequent) transmigration of neutrophils via protein synthesis and secondary generation of leukotrienes and PAF, which in turn directly activate neutrophils. Thereby, neutrophils facilitate basement membrane remodeling and promote microvascular leakage

    Coherence in Microchip Traps

    Full text link
    We report the coherent manipulation of internal states of neutral atoms in a magnetic microchip trap. Coherence lifetimes exceeding 1 s are observed with atoms at distances of 5−130ÎŒ5-130 \mum from the microchip surface. The coherence lifetime in the chip trap is independent of atom-surface distance within our measurement accuracy, and agrees well with the results of similar measurements in macroscopic magnetic traps. Due to the absence of surface-induced decoherence, a miniaturized atomic clock with a relative stability in the 10−1310^{-13} range can be realized. For applications in quantum information processing, we propose to use microwave near-fields in the proximity of chip wires to create potentials that depend on the internal state of the atoms.Comment: Revised version, accepted for publication in Phys. Rev. Lett., 4 pages, 4 figure

    Valorization of organic carbon in primary sludge via semi-continuous dark fermentation: First step to establish a wastewater biorefinery

    Get PDF
    In this study, lab-scale, bench-scale, and pilot-scale experiments were carried out to optimize short-chain fatty acids production from primary sludge. Batch tests showed the requirement of short retention times and semi-continuous operation mode showed a plateau of maximum daily productivity at 36-hours hydraulic retention time with minimal methanation. Optimization from pH 5 to pH 10 at 36 h-hydraulic retention time under long-term semi-continuous operating mode revealed that production of short-chain fatty acids was pH dependent and highest yields could be achieved at pH 7 by establishing optimum redox conditions for fermentation. Pilot-scale experiments at 32 °C showed that daily productivity (3.1 g∙Lreactor_{reactor}−1^{-1}∙dHRT_{HRT}−1^{-1}) and yields (150 mg∙gVS_{VS}−1^{-1}; OLR = 21 gVS_{VS}∙Lreactor_{reactor}−1^{-1}∙dHRT_{HRT}−1^{-1}; pH 7) of short-chain fatty acids could be significantly improved, specifically for acetic and propionic acids. From these results, a robust dark fermentation step for recovery of valuable products from the solids treatment step in a biorefinery can be achieved

    A waveguide atom beamsplitter for laser-cooled neutral atoms

    Get PDF
    A laser-cooled neutral-atom beam from a low-velocity intense source is split into two beams while guided by a magnetic-field potential. We generate our multimode-beamsplitter potential with two current-carrying wires on a glass substrate combined with an external transverse bias field. The atoms bend around several curves over a 1010-cm distance. A maximum integrated flux of 1.5⋅105atoms/s1.5\cdot10^{5} \mathrm{atoms/s} is achieved with a current density of 5⋅104Ampere/cm25\cdot10^{4} \mathrm{Ampere/cm^{2}} in the 100-ÎŒm\mathrm{\mu m} diameter wires. The initial beam can be split into two beams with a 50/50 splitting ratio
    • 

    corecore