70 research outputs found

    Using benthic foraminifera to reconstruct the benthic environment during sapropel formation

    Get PDF
    Date du colloque : 03/2008International audienc

    Biomineralization in perforate foraminifera

    Get PDF
    In this paper, we review the current understanding of biomineralization in perforate foraminifera. Ideas on the mechanisms responsible for the flux of Ca2 + and inorganic carbon from seawater into the test were originally based on light and electron microscopic observations of calcifying foraminifera. From the 1980s onward, tracer experiments, fluorescent microscopy and high-resolution test geochemical analysis have added to existing calcification models. Despite recent insights, no general consensus on the physiological basis of foraminiferal biomineralization exists. Current models include seawater vacuolization, transmembrane ion transport, involvement of organic matrices and/or pH regulation, although the magnitude of these controls remain to be quantified. Disagreement between currently available models may be caused by the use of different foraminiferal species as subject for biomineralization experiments and/or lack of a more systematic approach to study (dis)similarities between taxa. In order to understand foraminiferal controls on element incorporation and isotope fractionation, and thereby improve the value of foraminifera as paleoceanographic proxies, it is necessary to identify key processes in foraminiferal biomineralization and formulate hypotheses regarding the involved physiological pathways to provide directions for future research

    Науково-практичний семінар “Архівна україніка: пошук, реєстрація та комплектування архівів”

    Get PDF
    28 жовтня 2010 р. у Державному комітеті архівів України відбувся науково-практичний семінар “Архівна україніка: пошук, реєстрація та комплектування архівів”, організований Державним комітетом спільно з Центральним державним архівом зарубіжної україніки (ЦДАЗ У) і Українським науково-дослідним інститутом архівної справи та документознавства (УНДІА СД) на виконання Указу Президента України від 13.10.2006 № 875/2006 “Про національну концепцію співпраці із закордонними українцями, державної програми співпраці із закордонним українством та галузевої програми “Зарубіжна україніка”

    Anti-cyclonic eddy imprint on calcite geochemistry of several planktonic foraminiferal species in the Mozambique Channel

    Get PDF
    Hydrographic conditions in the Mozambique Channel are dominated by the passing of large anticyclonic eddies, propagating poleward into the upstream Agulhas area. Further south, these eddies have been found to control the shedding of Agulhas rings into the Atlantic ocean, thereby playing a key role in Indo-Atlantic Ocean exchange. The element composition of several planktonic foraminifera species collected from sediment trap samples, was compared to in situ water column data from the Mozambique Channel. Single-chamber trace element composition of these foraminifera reveals a close coupling with hydrographic changes induced by anticyclonic eddies. Obtained Mg/Ca values for the surface dwelling Globigerinoides ruber as well as the thermocline dwelling Neogloboquadrina dutertrei follow temperature changes and reduced temperature stratification during eddy conditions. At greater depth, Globorotalia scitula and Pulleniatina obliquiloculata record stable temperatures and thus respond to hydrographic changes with a deepening in habitat depth. Furthermore, test Mn/Ca values indicate a close relationship between water column oxygenation and Mn incorporation in these planktonic foraminiferal specie

    Warming, euxinia and sea level rise during the Paleocene–Eocene Thermal Maximum on the Gulf Coastal Plain: implications for ocean oxygenation and nutrient cycling

    Get PDF
    The Paleocene–Eocene Thermal Maximum(PETM, ?56 Ma) was a ?200 kyr episode of globalwarming, associated with massive injections of 13C-depletedcarbon into the ocean–atmosphere system. Although climatechange during the PETM is relatively well constrained,effects on marine oxygen concentrations and nutrientcycling remain largely unclear. We identify the PETM in asediment core from the US margin of the Gulf of Mexico.Biomarker-based paleotemperature proxies (methylationof branched tetraether–cyclization of branched tetraether(MBT–CBT) and TEX86) indicate that continental air andsea surface temperatures warmed from 27–29 to ?35 ?C,although variations in the relative abundances of terrestrialand marine biomarkers may have influenced these estimates.Vegetation changes, as recorded from pollen assemblages,support this warming.The PETM is bracketed by two unconformities. It overliesPaleocene silt- and mudstones and is rich in angular(thus in situ produced; autochthonous) glauconite grains,which indicate sedimentary condensation. A drop in the relativeabundance of terrestrial organic matter and changesin the dinoflagellate cyst assemblages suggest that risingsea level shifted the deposition of terrigenous material landward.This is consistent with previous findings of eustatic sealevel rise during the PETM. Regionally, the attribution of theglauconite-rich unit to the PETM implicates the dating of aprimate fossil, argued to represent the oldest North Americanspecimen on record.The biomarker isorenieratene within the PETM indicatesthat euxinic photic zone conditions developed, likely seasonally,along the Gulf Coastal Plain. A global data compilationindicates that O2 concentrations dropped in allocean basins in response to warming, hydrological change,and carbon cycle feedbacks. This culminated in (seasonal)anoxia along many continental margins, analogous to moderntrends. Seafloor deoxygenation and widespread (seasonal)anoxia likely caused phosphorus regeneration fromsuboxic and anoxic sediments.We argue that this fueled shelfeutrophication, as widely recorded from microfossil studies,increasing organic carbon burial along many continentalPublished by Copernicus Publications on behalf of the European Geosciences Union.Warming, euxinia and sea level rise during the PETMmargins as a negative feedback to carbon input and globalwarming. If properly quantified with future work, the PETMoffers the opportunity to assess the biogeochemical effects ofenhanced phosphorus regeneration, as well as the timescaleson which this feedback operates in view of modern and futureocean deoxygenation

    Effect of different seawater Mg<sup>2+</sup> concentrations on calcification in two benthic foraminifers

    Get PDF
    Magnesium, incorporated in foraminiferal calcite (Mg/CaCC), is used intensively to reconstruct past seawater temperatures but, in addition to temperature, the Mg/CaCC of foraminiferal tests also depends on the ratio of Mg and Ca in seawater (Mg/CaSW). The physiological mechanisms responsible for these proxy relationships are still unknown. This culture study investigates the impact of different seawater [Mg2 +] on calcification in two benthic foraminiferal species precipitating contrasting Mg/CaCC: Ammonia aomoriensis, producing low-Mg calcite and Amphistegina lessonii, producing intermediate-Mg calcite. Foraminiferal growth and test thickness were determined and, Mg/Ca was analyzed using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS). Results show that at present-day seawater Mg/CaSW of ~ 5, both species have highest growth rates, reflecting their adaptation to modern seawater element concentrations. Test thickness is not significantly affected by different Mg/CaSW. The relationship between Mg/CaSW and Mg/CaCC shows a distinct positive y-axis intercept, possibly reflecting at least two processes involved in foraminiferal biomineralization. The associated Mg partition (DMg) changes non-linearly with increasing Mg/CaSW, hence suggesting that the DMg is best described by an exponential function approaching an asymptot
    corecore