793 research outputs found

    Parametric Analysis of Forces and Stresses in Superconducting Quadrupole Sector Windings

    Get PDF
    This paper presents a review of the existing analytical approximations of the magnetic field of a sector winding quadrupole, evaluating to which extent these formulae are usable as a first estimation of the resultants of the electromagnetic forces and related mechanical stresses produced. The distribution of the forces has been investigated to better understand the stress provided to the structure containing the windings and the compression effect induced on the coil mid plane. Therefore, the study has been carried out setting the magnet current at its critical value, analyzing forces and stresses as functions of the geometrical layout and of the magnetic gradient as well. In the last part the effect of an iron yoke on the magnetic field and forces is presented

    Industrial Learning Curves: Series Production of the LHC Main Superconduting Dipoles

    Get PDF
    By mid August 2006, 1160 of the 1232 of LHC main dipoles have been delivered to CERN by the three suppliers in charge of the production. The training of the staff, mostly hired just for this manufacture, and the improvement of the procedures with the acquired experience, naturally decrease the time necessary for the assembly of a unit. The aim of this paper is to apply methodologies like the cost-based learning curves and the time-based learning curves to the LHC Main Dipole production comparing the estimated learning percentage to the ones experienced in other industries. This type of analysis, already presented on 500 units is here extended to more than 1000 completed units. The work also tries to identify which type of industry presents the learning percentages that are the most similar to our case and to investigate the impact of the production strategy on the process efficiency

    Push-me pull-you: comparative advertising in the OTC analgesics industry

    Get PDF
    We derive equilibrium incentives to use comparative advertising that pushes up own brand perception and pulls down the brand image of targeted rivals. Data on content and spending for all TV advertisements in OTC analgesics 2001-2005 enable us to construct matrices of dollar rival targeting and estimate the structural model. Using brands' optimal choices, these attack matrices identify diversion ratios, from which we derive comparative advertising damage measures. We find that outgoing comparative advertising attacks are half as powerful as self-promotion in raising own perceived quality and cause more damage to the targeted rival than benefit to the advertiser. Comparative advertising causes most damage through the pull-down effect and has substantial benefits to other rivals

    Comparison of 2-D Magnetic Designs of Selected Coil Configurations for the Next European Dipole (NED)

    Get PDF
    The Next European Dipole (NED) activity is developing a high-performance Nb3_{3}Sn wire (aiming at a non-copper critical current density of 1500 A/mm2 at 4.2 K and 15 T), within the framework of the Coordinated Accelerator Research in Europe (CARE) project. This activity is expected to lead to the fabrication of a large aperture, high field dipole magnet. In preparation for this phase, a Working Group on Magnet Design and Optimization (MDO) has been established to propose an optimal design. Other parallel Work Packages are concentrating on relevant topics, such as quench propagation simulation, innovative insulation techniques, and heat transfer measurements. In a first stage, the MDO Working Group has selected a number of coil configurations to be studied, together with salient parameters and features to be considered during the evaluation: the field quality, the superconductor efficiency, the conductor peak field, the stored magnetic energy, the Lorentz Forces and the fabrication difficulties. 2-D magnetic calculations have been performed, and the results of this comparison between the different topologies are presented in this paper. The 2-D mechanical computations are ongoing and the final stage will be 3-D magnetic and mechanical studies

    A 120 mm Bore Quadrupole for the Phase I LHC Upgrade

    Get PDF
    The phase I LHC upgrade foresees the installation of a new final focusing for the high luminosity experiences in order to be able to focus the beams in the interaction points to ß* 0.25 cm. Key element of this upgrade is a large bore (120 mm) superconducting quadrupole. This article proposes a magnet design that will make use of the LHC main dipole superconducting cable. Due to the schedule constraints and to the budget restrictions, it is mandatory to integrate in the design the maximum number of features successfully used during the LHC construction. This paper presents this design option and the rationales behind the several technical choices

    Low loss coatings for the VIRGO large mirrors

    Get PDF
    présentée par L. PinardThe goal of the VIRGO program is to build a giant Michelson type interferometer (3 kilometer long arms) to detect gravitational waves. Large optical components (350 mm in diameter), having extremely low loss at 1064 nm, are needed. Today, the Ion beam Sputtering is the only deposition technique able to produce optical components with such performances. Consequently, a large ion beam sputtering deposition system was built to coat large optics up to 700 mm in diameter. The performances of this coater are described in term of layer uniformity on large scale and optical losses (absorption and scattering characterization). The VIRGO interferometer needs six main mirrors. The first set was ready in June 2002 and its installation is in progress on the VIRGO site (Italy). The optical performances of this first set are discussed. The requirements at 1064 nm are all satisfied. Indeed, the absorption level is close to 1 ppm (part per million), the scattering is lower than 5 ppm and the R.M.S. wavefront of these optics is lower than 8 nm on 150 mm in diameter. Finally, some solutions are proposed to further improve these performances, especially the absorption level (lower than 0.1 ppm) and the mechanical quality factor Q of the mirrors (thermal noise reduction)

    Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires

    Get PDF
    The production of tt‾ , W+bb‾ and W+cc‾ is studied in the forward region of proton–proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fb−1 . The W bosons are reconstructed in the decays W→ℓν , where ℓ denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of ttt\overline{t}, W+bbW+b\overline{b} and W+ccW+c\overline{c} is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 ±\pm 0.02 \mbox{fb}^{-1}. The WW bosons are reconstructed in the decays WνW\rightarrow\ell\nu, where \ell denotes muon or electron, while the bb and cc quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions

    Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era

    Get PDF
    The LHCb Upgrade II will fully exploit the flavour-physics opportunities of the HL-LHC, and study additional physics topics that take advantage of the forward acceptance of the LHCb spectrometer. The LHCb Upgrade I will begin operation in 2020. Consolidation will occur, and modest enhancements of the Upgrade I detector will be installed, in Long Shutdown 3 of the LHC (2025) and these are discussed here. The main Upgrade II detector will be installed in long shutdown 4 of the LHC (2030) and will build on the strengths of the current LHCb experiment and the Upgrade I. It will operate at a luminosity up to 2×1034 cm−2s−1, ten times that of the Upgrade I detector. New detector components will improve the intrinsic performance of the experiment in certain key areas. An Expression Of Interest proposing Upgrade II was submitted in February 2017. The physics case for the Upgrade II is presented here in more depth. CP-violating phases will be measured with precisions unattainable at any other envisaged facility. The experiment will probe b → sl+l−and b → dl+l− transitions in both muon and electron decays in modes not accessible at Upgrade I. Minimal flavour violation will be tested with a precision measurement of the ratio of B(B0 → μ+μ−)/B(Bs → μ+μ−). Probing charm CP violation at the 10−5 level may result in its long sought discovery. Major advances in hadron spectroscopy will be possible, which will be powerful probes of low energy QCD. Upgrade II potentially will have the highest sensitivity of all the LHC experiments on the Higgs to charm-quark couplings. Generically, the new physics mass scale probed, for fixed couplings, will almost double compared with the pre-HL-LHC era; this extended reach for flavour physics is similar to that which would be achieved by the HE-LHC proposal for the energy frontier

    LHCb upgrade software and computing : technical design report

    Get PDF
    This document reports the Research and Development activities that are carried out in the software and computing domains in view of the upgrade of the LHCb experiment. The implementation of a full software trigger implies major changes in the core software framework, in the event data model, and in the reconstruction algorithms. The increase of the data volumes for both real and simulated datasets requires a corresponding scaling of the distributed computing infrastructure. An implementation plan in both domains is presented, together with a risk assessment analysis

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages
    corecore