1,433 research outputs found

    Shot-noise suppression in Schottky barrier diodes

    Get PDF
    We give a theoretical interpretation of the noise properties of Schottky barrier diodes based on the role played by the long range Coulomb interaction. We show that at low bias Schottky diodes display shot noise because the presence of the depletion layer makes negligible the effects of the Coulomb interaction on the current fluctuations. When the device passes from barrier to flat band conditions, the Coulomb interaction becomes active, thus introducing correlation between different current fluctuations. Therefore, the cross-over between shot and thermal noise represents the suppression due to long range Coulomb interaction of the otherwise full shot-noise. Similar ideas can be used to interpret the noise properties of others semiconductor devices.Comment: 3 page

    Religious attitudes and home bias: theory and evidence from a pilot study

    Get PDF
    This paper examines the relationship between religion and home bias. We propose a simple theoretical framework that suggests that countries interacting via their representative individuals might show a certain degree of religion-driven international altruism that in turn affects trade. We test these predictions exploiting data from a survey on religious attitudes and individuals' preferences over consumption of home-produced versus foreign goods that we designed and carried out in 15 different countries. We find evidence that religious openness and home bias are negatively correlated. This appears to provide some support to the hypothesis that religious openness, through trust and altruism, may have a pro-trade effect.

    Noise suppression due to long-range Coulomb interaction: Crossover between diffusive and ballistic transport regimes

    Full text link
    We present a Monte Carlo analysis of shot-noise suppression due to long-range Coulomb interaction in semiconductor samples under a crossover between diffusive and ballistic transport regimes. By varying the mean time between collisions we find that the strong suppression observed under the ballistic regime persists under quasi-ballistic conditions, before being washed out when a complete diffusive regime is reached.Comment: RevTex, 3 pages, 4 figures, minor correction

    Modelization of Thermal Fluctuations in G Protein-Coupled Receptors

    Full text link
    We simulate the electrical properties of a device realized by a G protein coupled receptor (GPCR), embedded in its membrane and in contact with two metallic electrodes through which an external voltage is applied. To this purpose, recently, we have proposed a model based on a coarse graining description, which describes the protein as a network of elementary impedances. The network is built from the knowledge of the positions of the C-alpha atoms of the amino acids, which represent the nodes of the network. Since the elementary impedances are taken depending of the inter-nodes distance, the conformational change of the receptor induced by the capture of the ligand results in a variation of the network impedance. On the other hand, the fluctuations of the atomic positions due to thermal motion imply an impedance noise, whose level is crucial to the purpose of an electrical detection of the ligand capture by the GPCR. Here, in particular, we address this issue by presenting a computational study of the impedance noise due to thermal fluctuations of the atomic positions within a rhodopsin molecule. In our model, the C-alpha atoms are treated as independent, isotropic, harmonic oscillators, with amplitude depending on the temperature and on the position within the protein (alpha-helix or loop). The relative fluctuation of the impedance is then calculated for different temperatures.Comment: 5 pages, 2 figures, Proceeding of the 18-th International Conference on Fluctuations and Noise, 19-23 September 2005, Salamanca, Spain -minor proofreadings

    Shot Noise in Linear Macroscopic Resistors

    Get PDF
    We report on a direct experimental evidence of shot noise in a linear macroscopic resistor. The origin of the shot noise comes from the fluctuation of the total number of charge carriers inside the resistor associated with their diffusive motion under the condition that the dielectric relaxation time becomes longer than the dynamic transit time. Present results show that neither potential barriers nor the absence of inelastic scattering are necessary to observe shot noise in electronic devices.Comment: 10 pages, 5 figure

    Stationary Regime of Random Resistor Networks Under Biased Percolation

    Full text link
    The state of a 2-D random resistor network, resulting from the simultaneous evolutions of two competing biased percolations, is studied in a wide range of bias values. Monte Carlo simulations show that when the external current II is below the threshold value for electrical breakdown, the network reaches a steady state with a nonlinear current-voltage characteristic. The properties of this nonlinear regime are investigated as a function of different model parameters. A scaling relation is found between /0/_0 and I/I0I/I_0, where is the average resistance, 0_0 the linear regime resistance and I0I_0 the threshold value for the onset of nonlinearity. The scaling exponent is found to be independent of the model parameters. A similar scaling behavior is also found for the relative variance of resistance fluctuations. These results compare well with resistance measurements in composite materials performed in the Joule regime up to breakdown.Comment: 9 pages, revtex, proceedings of the Merida Satellite Conference STATPHYS2

    Tuning the Correlation Decay in the Resistance Fluctuations of Multi-Species Networks

    Full text link
    A new network model is proposed to describe the 1/fα1/f^\alpha resistance noise in disordered materials for a wide range of α\alpha values (0<α<20< \alpha < 2). More precisely, we have considered the resistance fluctuations of a thin resistor with granular structure in different stationary states: from nearly equilibrium up to far from equilibrium conditions. This system has been modelled as a network made by different species of resistors, distinguished by their resistances, temperature coefficients and by the energies associated with thermally activated processes of breaking and recovery. The correlation behavior of the resistance fluctuations is analyzed as a function of the temperature and applied current, in both the frequency and time domains. For the noise frequency exponent, the model provides 0<α<10< \alpha < 1 at low currents, in the Ohmic regime, with α\alpha decreasing inversely with the temperature, and 1<α<21< \alpha <2 at high currents, in the non-Ohmic regime. Since the threshold current associated with the onset of nonlinearity also depends on the temperature, the proposed model qualitatively accounts for the complicate behavior of α\alpha versus temperature and current observed in many experiments. Correspondingly, in the time domain, the auto-correlation function of the resistance fluctuations displays a variety of behaviors which are tuned by the external conditions.Comment: 26 pages, 16 figures, Submitted to JSTAT - Special issue SigmaPhi200

    Strong compensation of the quantum fluctuation corrections in clean superconductor

    Full text link
    The theory of fluctuation conductivity for an arbitrary impurity concentration including ultra-clean limit is developed. It is demonstrated that the formal divergency of the fluctuation density of states contribution obtained previously for the clean case is removed by the correct treatment of the non-local ballistic electron scattering. We show that in the ultra-clean limit (Tτ≫TcT−TcT\tau \gg \sqrt{\frac{T_c}{T-T_c}}) the density-of-states quantum corrections are canceled by the Maki-Thompson term and only quasi-classical paraconductivity remains.Comment: 7 pages 2 figure
    • …
    corecore