We simulate the electrical properties of a device realized by a G protein
coupled receptor (GPCR), embedded in its membrane and in contact with two
metallic electrodes through which an external voltage is applied. To this
purpose, recently, we have proposed a model based on a coarse graining
description, which describes the protein as a network of elementary impedances.
The network is built from the knowledge of the positions of the C-alpha atoms
of the amino acids, which represent the nodes of the network. Since the
elementary impedances are taken depending of the inter-nodes distance, the
conformational change of the receptor induced by the capture of the ligand
results in a variation of the network impedance. On the other hand, the
fluctuations of the atomic positions due to thermal motion imply an impedance
noise, whose level is crucial to the purpose of an electrical detection of the
ligand capture by the GPCR. Here, in particular, we address this issue by
presenting a computational study of the impedance noise due to thermal
fluctuations of the atomic positions within a rhodopsin molecule. In our model,
the C-alpha atoms are treated as independent, isotropic, harmonic oscillators,
with amplitude depending on the temperature and on the position within the
protein (alpha-helix or loop). The relative fluctuation of the impedance is
then calculated for different temperatures.Comment: 5 pages, 2 figures, Proceeding of the 18-th International Conference
on Fluctuations and Noise, 19-23 September 2005, Salamanca, Spain -minor
proofreadings