research

Stationary Regime of Random Resistor Networks Under Biased Percolation

Abstract

The state of a 2-D random resistor network, resulting from the simultaneous evolutions of two competing biased percolations, is studied in a wide range of bias values. Monte Carlo simulations show that when the external current II is below the threshold value for electrical breakdown, the network reaches a steady state with a nonlinear current-voltage characteristic. The properties of this nonlinear regime are investigated as a function of different model parameters. A scaling relation is found between /0/_0 and I/I0I/I_0, where is the average resistance, 0_0 the linear regime resistance and I0I_0 the threshold value for the onset of nonlinearity. The scaling exponent is found to be independent of the model parameters. A similar scaling behavior is also found for the relative variance of resistance fluctuations. These results compare well with resistance measurements in composite materials performed in the Joule regime up to breakdown.Comment: 9 pages, revtex, proceedings of the Merida Satellite Conference STATPHYS2

    Similar works