10 research outputs found

    Cognitive Performance Measures in Bioelectromagnetic Research - Critical Evaluation and Recommendations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The steady increase of mobile phone usage has led to a rising concern about possible adverse health effects of radio frequency electromagnetic field (RF EMF) exposure at intensities even below the existing safety limits. Accumulating evidence suggests that pulse-modulated RF EMF may alter brain physiology. Yet, whereas effects on the human electroencephalogram in waking and sleep have repeatedly been shown in recent years, results on cognitive performance are inconsistent.</p> <p>Methods</p> <p>This review compares 41 provocation studies regarding the effects of RF EMF exposure similar to mobile telephones on cognitive performance measures in humans. The studies were identified via systematic searches of the databases Pub Med and ISI Web of Science and were published in peer-reviewed journals between 1998 and the end of 2009.</p> <p>Results</p> <p>Based on a critical discussion within the scope of methodological standards it is concluded that state-of-the-art-methods in bio-electromagnetic research on RF EMF effects and cognition have neither been specified nor fully implemented over the last 10-11 years. The lack of a validated tool, which reliably assesses changes in cognitive performance caused by RF EMF exposure, may contribute to the current inconsistencies in outcomes. The high variety of findings may also be due to methodological issues such as differences in sample size and the composition of study groups, experimental design, exposure setup as well as the exposure conditions, and emphasizes the need for a standardized protocol in bioelectromagnetic research.</p> <p>Conclusions</p> <p>At present, no underlying biological mechanism has been identified which mediates the effects on brain functioning as observed in electroencephalographic (EEG) studies. A future aim must be to identify this mechanism as well as a reliable exposure protocol in order to gain more insights into possible behavioral and related health consequences of high-frequency EMF exposure.</p

    Conduct of a personal radiofrequency electromagnetic field measurement study: proposed study protocol

    Get PDF
    Background: The development of new wireless communication technologies that emit radio frequency electromagnetic fields (RF-EMF) is ongoing, but little is known about the RF-EMF exposure distribution in the general population. Previous attempts to measure personal exposure to RF-EMF have used different measurement protocols and analysis methods making comparisons between exposure situations across different study populations very difficult. As a result, observed differences in exposure levels between study populations may not reflect real exposure differences but may be in part, or wholly due to methodological differences. Methods: The aim of this paper is to develop a study protocol for future personal RF-EMF exposure studies based on experience drawn from previous research. Using the current knowledge base, we propose procedures for the measurement of personal exposure to RF-EMF, data collection, data management and analysis, and methods for the selection and instruction of study participants. Results: We have identified two basic types of personal RF-EMF measurement studies: population surveys and microenvironmental measurements. In the case of a population survey, the unit of observation is the individual and a randomly selected representative sample of the population is needed to obtain reliable results. For microenvironmental measurements, study participants are selected in order to represent typical behaviours in different microenvironments. These two study types require different methods and procedures. Conclusion: Applying our proposed common core procedures in future personal measurement studies will allow direct comparisons of personal RF-EMF exposures in different populations and study areas

    Children\u27s health and RF EMF exposure

    Get PDF
    The present report documents a dialogue between scientists reviewing the currently available scientific evidence with respect to the effects of RF EMF exposure on children. The focus was directed towards a transparent and comprehensible characterization of the findings and conclusions for the evaluation of the relationship between mobile phone communication and children’s health. The now available report, based on the scientific opinions of the experts as well as on a series of workshops, aims to help the public and policy makers to better understand the current state of the scientific evidence as well as implications for the risk evaluation with respect to children

    UMTS base station-like exposure, well-being, and cognitive performance

    Get PDF
    BACKGROUND: Radio-frequency electromagnetic fields (RF EMF) of mobile communication systems are widespread in the living environment, yet their effects on humans are uncertain despite a growing body of literature. OBJECTIVES: We investigated the influence of a Universal Mobile Telecommunications System (UMTS) base station-like signal on well-being and cognitive performance in subjects with and without self-reported sensitivity to RF EMF. METHODS: We performed a controlled exposure experiment (45 min at an electric field strength of 0, 1, or 10 V/m, incident with a polarization of 45 degrees from the left back side of the subject, weekly intervals) in a randomized, double-blind crossover design. A total of 117 healthy subjects (33 self-reported sensitive, 84 nonsensitive subjects) participated in the study. We assessed well-being, perceived field strength, and cognitive performance with questionnaires and cognitive tasks and conducted statistical analyses using linear mixed models. Organ-specific and brain tissue-specific dosimetry including uncertainty and variation analysis was performed. RESULTS: In both groups, well-being and perceived field strength were not associated with actual exposure levels. We observed no consistent condition-induced changes in cognitive performance except for two marginal effects. At 10 V/m we observed a slight effect on speed in one of six tasks in the sensitive subjects and an effect on accuracy in another task in nonsensitive subjects. Both effects disappeared after multiple end point adjustment. CONCLUSIONS: In contrast to a recent Dutch study, we could not confirm a short-term effect of UMTS base station-like exposure on well-being. The reported effects on brain functioning were marginal and may have occurred by chance. Peak spatial absorption in brain tissue was considerably smaller than during use of a mobile phone. No conclusions can be drawn regarding short-term effects of cell phone exposure or the effects of long-term base station-like exposure on human health
    corecore