6,233 research outputs found

    Renovation of Nitrogenous Wastewater Via Land Application

    Get PDF
    Removal of inorganic and organic nitrogen from wastewater prior to recharge of ground and surface waters can be accomplished by judicious land application. This study focused attention upon the feasibility of using sprinkler irrigation as the wastewater delivery system with coastal bermudagrass (Cynodon dactylon L.,var. coastal) pasture as the wastewater sink. One site was located on a Sawyer soil near El Dorado, while the other was located on a Savannah soil near Malvern. This report is limited to the renovation of surface waters. Results revealed that nitrogen concentration in runoff water from rainfall was substantially less than nitrogen concentration of the wastewater applied to the soil and similar to background levels. Such results support the consideration of land application as a viable wastewater disposal method

    The determination of the direction of the optic axis of uniaxial crystalline materials

    Get PDF
    The birefringence of crystalline substances in general, and of sapphire in particular, is described. A test is described whose purpose is to determine the direction of the optic axis of a cylindrically machined single crystal of sapphire. This test was performed on the NASA Lewis sapphire cylinder and it was found that the optic axis made an angle of 18 deg with the axis of symmetry of the cylinder

    CP Violation from a Higher Dimensional Model

    Get PDF
    It is shown that Randall-Sundrum model has the EDM term which violates the CP-symmetry. The comparison with the case of Kaluza-Klein theory is done. The chiral property, localization, anomaly phenomena are examined. We evaluate the bulk quantum effect using the method of the induced effective action. This is a new origin of the CP-violation.Comment: 15pages, Proc. of Int. Workshop on "Neutrino Masses and Mixings"(Dec.17-19,2006,Univ.of Shizuoka,Japan

    Characterization of 40-Gbit/s pulses generated using a lithium niobate modulator at 1550 nm using frequency resolved optical gating

    Get PDF
    The characteristics of 40-Gbit/s pulses generated by exploiting the nonlinear characteristics of a Mach-Zender Lithium Niobate modulator are presented. A high spectral resolution frequency resolved optical gating apparatus has been developed to allow for the complete characterization of the intensity and phase of these pulses. The use of these measurements to simplify the design and optimization of an 80-Gbit/s pulse source, based on this 40-Gbit/s source followed by a nonlinear fiber compressor and multiplexer, is also demonstrated

    Rapid and efficient stable gene transfer to mesenchymal stromal cells using a modified foamy virus vector

    Get PDF
    Mesenchymal stromal cells (MSCs) hold great promise for regenerative medicine. Stable ex vivo gene transfer to MSCs could improve the outcome and scope of MSC therapy, but current vectors require multiple rounds of transduction, involve genotoxic viral promoters and/or the addition of cytotoxic cationic polymers in order to achieve efficient transduction. We describe a self-inactivating foamy virus vector (FVV), incorporating the simian macaque foamy virus envelope and using physiological promoters, which efficiently transduces murine MSCs (mMSCs) in a single-round. High and sustained expression of the transgene, whether GFP or the lysosomal enzyme, arylsulphatase A (ARSA), was achieved. Defining MSC characteristics (surface marker expression and differentiation potential), as well as long-term engraftment and distribution in the murine brain following intracerebroventricular delivery, are unaffected by FVV transduction. Similarly, greater than 95% of human MSCs (hMSCs) were stably transduced using the same vector, facilitating human application. This work describes the best stable gene transfer vector available for mMSCs and hMSCs

    The bispectrum of matter perturbations from cosmic strings

    Get PDF
    We present the first calculation of the bispectrum of the matter perturbations induced by cosmic strings. The calculation is performed in two different ways: the first uses the unequal time correlators (UETCs) of the string network - computed using a Gaussian model previously employed for cosmic string power spectra. The second approach uses the wake model, where string density perturbations are concentrated in sheet-like structures whose surface density grows with time. The qualitative and quantitative agreement of the two gives confidence to the results. An essential ingredient in the UETC approach is the inclusion of compensation factors in the integration with the Green's function of the matter and radiation fluids, and we show that these compensation factors must be included in the wake model also. We also present a comparison of the UETCs computed in the Gaussian model, and those computed in the unconnected segment model (USM) used by the standard cosmic string perturbation package CMBACT. We compare numerical estimates for the bispectrum of cosmic strings to those produced by perturbations from an inflationary era, and discover that, despite the intrinsically non-Gaussian nature of string-induced perturbations, the matter bispectrum is unlikely to produce competitive constraints on a population of cosmic strings

    Optimization of optical data transmitters for 40-Gb/s lightwave systems using frequency resolved optical gating

    Get PDF
    The measurement technique of frequency resolved optical gating has been used to optimize the phase of a 40-GHz train of optical pulses generated using a continuous-wave laser gated with an external modulator. This technique will be vital for optimization of optical transmitters to be used in systems operating at 40 Gb/s and beyond, as standard measurement techniques will not suffice to optimize such high-speed systems

    The Vortex Phase Diagram of Rotating Superfluid 3^3He-B

    Get PDF
    We present the first theoretical calculation of the pressure-temperature-field phase diagram for the vortex phases of rotating superfluid 3^3He-B. Based on a strong-coupling extension of the Ginzburg-Landau theory that accounts for the relative stability of the bulk A and B phases of 3^3He at all pressures, we report calculations for the internal structure and free energies of distinct broken-symmetry vortices in rotating superfluid 3^3He-B. Theoretical results for the equilibrium vortex phase diagram in zero field and an external field of H=284\,\mbox{G} parallel to the rotation axis, HΩ\vec{H}\parallel\vec{\Omega}, are reported, as well as the supercooling transition line, Tv(p,H)T^{*}_ {v} (p,H). In zero field the vortex phases of 3^3He-B are separated by a first-order phase transition line Tv(p)T_ {v} (p) that terminates on the bulk critical line Tc(p)T_{c}(p) at a triple point. The low-pressure, low-temperature phase is characterized by an array of singly-quantized vortices that spontaneously breaks axial rotation symmetry, exhibits anisotropic vortex currents and an axial current anomaly (D-core phase). The high-pressure, high-temperature phase is characterized by vortices with both bulk A phase and β\beta phase in their cores (A-core phase). We show that this phase is metastable and supercools down to a minimum temperature, Tv(p,H)T^{*}_ {v} (p,H), below which it is globally unstable to an array of D-core vortices. For H\gtrsim 60\,\mbox{G} external magnetic fields aligned along the axis of rotation increase the region of stability of the A-core phase of rotating 3^3He-B, opening a window of stability down to low pressures. These results are compared with the experimentally reported phase transitions in rotating 3^3He-B.Comment: 14 pages, 11 figure
    corecore