17 research outputs found

    The thickness variability of fluvial cross‐strata as a record of dune disequilibrium and palaeohydrology proxy: A test against channel deposits

    Get PDF
    Strata produced by fluvial dunes can provide insight into the hydrological regime of ancient rivers. Recent experiments indicate that conditions of disequilibrium between bedforms and formative flows may be inferred from the coefficient of variation of preserved dune cross-set thickness, suggesting that this quantity may act as a proxy for the flashiness of river floods relative to the time required for full bedform translation. To assess whether this idea is applicable to interpretations of the stratigraphic record, this study examines published data relating to more than 2600 cross-sets from 53 sedimentary units of 19 river systems. The presented analyses must not be over interpreted, because the considered rivers span different environmental settings, the data sources are heterogeneous in terms of type and dimensionality, and some variables were established by applying empirical relationships. Yet, significant findings are revealed. Larger rivers exhibit discharge and bedform characteristics that are more conducive to disequilibrium; however, a modest increase in the coefficient of variation of cross-set thickness, CV(Dst), as opposed to the expected decrease, is seen as a function of river size. Crucially, smaller CV(Dst) values are not systematically associated with conditions that should favour dune disequilibrium. Meanwhile, only ca 25% of the studied examples demonstrate cross-set thickness statistics compatible with quantitative formulations of the autogenic control by variable dune topography – the notion of ‘variability-dominated’ preservation. These findings indicate that the variability in cross-set thickness may be a poor predictor of discharge variability, perhaps because of the multiplicity of factors controlling dune preservation, such as bedform hierarchy, transport stage and depth-dependent variations in dune disequilibrium. To improve interpretations of cross-stratified deposits, further research is needed to: (i) establish the value of process-to-product models for reverse product-to-process interpretations; and (ii) to define representative samples for preserved dune deposits accounting for temporal and spatial variability in preservation potential

    Back-flow ripples in troughs downstream of unit bars: Formation, preservation and value for interpreting flow conditions

    Get PDF
    Back-flow ripples are bedforms created within the lee-side eddy of a larger bedform with migration directions opposed or oblique to that of the host bedform. In the flume experiments described in this article, back-flow ripples formed in the trough downstream of a unit bar and changed with mean flow velocity; varying from small incipient back-flow ripples at low velocities, to well-formed back-flow ripples with greater velocity, to rapidly migrating transient back-flow ripples formed at the greatest velocities tested. In these experiments back-flow ripples formed at much lower mean back-flow velocities than predicted from previously published descriptions. This lower threshold mean back-flow velocity is attributed to the pattern of velocity variation within the lee-side eddy of the host bedform. The back-flow velocity variations are attributed to vortex shedding from the separation zone, wake flapping and increases in the size of, and turbulent intensity within, the flow separation eddy controlled by the passage of superimposed bedforms approaching the crest of the bar. Short duration high velocity packets, whatever their cause, may form back-flow ripples if they exceed the minimum bed shear stress for ripple generation for long enough or, if much faster, may wash them out. Variation in back-flow ripple cross-lamination has been observed in the rock record and, by comparison with flume observations, the preserved back-flow ripple morphology may be useful for interpreting formative flow and sediment transport dynamics

    Reading nature's barcode

    No full text

    Rivieren in vier dimensies

    No full text

    Influence of bedform superimposition and flow unsteadiness on the formation of cross strata in dunes and unit bars — Part 2, further experiments

    No full text
    This experimental investigation examines the processes that control the grain-size sorting and geometry of cross strata in dunes and unit bars, in particular the effects of bedform superimposition and flow unsteadiness. Cross stratification formed by dunes and unit bars is the most common sedimentary structure in river-channel deposits, and is common in many other depositional environments. Previous work by Reesink and Bridge (2007) shows that the grain-size variation that allows cross strata to be recognized is determined by three main factors: (1) pre-sorting by superimposed bedforms and flow unsteadiness; (2) sorting during deposition on the lee slope, and; (3) reworking of the slope by currents in the lee of the bedform. Differences in the relative importance of these three factors cause cross strata to be more varied in their geometry, grain-size sorting and permeability than commonly realized, and provide information for detailed quantitative interpretation of river-channel deposits.The experiments presented in this paper cover a wide range of steady and unsteady flow conditions with different combinations of host and superimposed bedforms. Lee-side deposition was highly variable at the time required for the buildup of cross strata, but systematic variations related to bed morphology provided good indicators of flow conditions. Water currents in the lee-side flow separation zone affect initial deposition on the lee slope and can re-distribute sediment on the lee slope. Centimeter-scale turbulent eddies were observed to increase the tangential shape, decrease the (vertical) grain-size separation, and reduce the thickness of the cross strata. These effects of turbulent eddies were found to increase with increasing flow velocity, decreasing grain size, and decreasing bedform height.Flow unsteadiness was primarily expressed in a change of host and/or superimposed bedform type. The pre-sorting pattern formed by the superimposed bedforms is lost if the pre-sorting involves less sediment than the processes that re-sort the sediment on the lee slope (e.g. grainflows). If the pre-sorting pattern of the superimposed bedforms can be identified, the cross strata they form can be used to interpret host and superimposed bedform geometries. The presence of reactivation surfaces indicates that superimposed bedform heights (Hs) exceed 25% of the host bedform height (H; Hs/H > 0.25). Pre-sorting by superimposed bedforms is recognizable as cross stratification where Hs/H < 0.25, and comprises: (i) drapes of fine-grained sediment that settles from suspension during the passage of the superimposed trough, and; (ii) a body of coarse-grained bedload with a cross-sectional area that equals the cross-sectional area of the formative superimposed bedform. The distinctiveness and lateral extent of fine-grained drapes represent the distinctiveness and lateral extent of their formative superimposed troughs. The lateral extent and internal grain-size sorting of the thick, coarser-grained body represents the lateral extent and internal grain-size sorting of the body of the superimposed bedform. The plan view shape of the host lee slope controls the cross-stream geometry of cross strata. Thus, cross strata can be used to interpret type, size, and geometry of the host and superimposed bedforms, hence flow and sediment transport condition on the back of the host bedfor

    Sediment transport and bedform development in the lee of bars: evidence from fixed- and partially-fixed bed experiments

    No full text
    The co-existence, interaction, and repeated (re-)establishment of bars, dunes and ripples in natural channels is responsible for many important flow-form-flow dynamics. Small bedforms are constantly generated, superimposed on larger ones, particularly in zones affected by large-scale secondary circulation patterns produced by the larger bedforms. These superimposed bedforms migrate onto the downstream stoss slope of larger-scale forms where they i) generate additional form-roughness, ii) change sediment transport dynamics, iii) control bedform splitting and merging, iv) alter the geometry of the host lee slope, and v) change the resultant sedimentary structures. Our understanding of superimposed bedform development is derived from investigations of bedform development on flat beds in uniform flow and does not adequately describe bedform development in distinctly non-uniform flows and areas with large-scale secondary circulations.In order to expand our understanding of bedform initiation, this paper presents fixed-bed and partially-fixed-bed experiments that investigate the effect of a host-bedform’s separated flow on the development of smaller, secondary bedforms in its trough. The results show that: 1) scour in the trough of bars increases in depth and decreases in downstream length with increasing flow velocity over the crest; 2) the point of bedform initiation moves downstream and the amplitude of the incipient ripples decreases with increasing flow velocity; 3) crest-trough velocity gradients and coherence of the separated flows in the lee of ripples in bar troughs depend on their position relative to the separated flow of the larger-scale host bedform and tend to increase down-stream.These observations indicate that the development of secondary bedforms is hindered by the host bedform’s separated flow and is also dependent on the length of the downstream stoss slope. The reduction of bedform amplification is attributed to the reduced strength and coherence of the separated flows in the lee of the secondary bedforms as a result of the stronger separated flow of the host bedform. Thus, this study presents a step towards a fuller understanding of bedform initiation and development in areas with complex topography and local variability in the flow field

    The adaptation of dunes to changes in river flow

    Get PDF
    The dunes that cover the beds of most alluvial channels change in size and shape over time and in space, which in turn affects the flow and sediment-transport dynamics of the river. However, both the precise mechanisms of such adaptation of dunes, and the hydraulic variables that control these processes, remain inadequately understood. This paper provides an overview of the processes involved in the maintenance and adaptation of dunes, provides new tools for the analysis of dune dynamics, and applies these to a series of bespoke experiments. Dunes that grow compete for space, and dunes that decay need to shed excess sediment. Therefore, dune adaptation necessarily involves the redistribution of sediment over and among dunes. The details of sediment redistribution are not captured by mean geometric parameters such as dune height and wavelength. Therefore, new analyses of dune kinematics, bed-elevation distributions, and dune deformation are presented herein that aid the identification and analysis of dune dynamics. Dune adaptation is often described as a morphological response to changes in water depth at a rate that depends on sediment mobility, which itself is a product of flow depth and velocity. However, depth and velocity are out-of-phase during the passage of flood waves, and they vary spatially across rivers from the thalweg to bar tops, and downstream along the river profile. In order to improve our understanding of the hydraulic controls on dune morphology and kinematics, a series of experiments was performed to investigate the response of dunes in fully-mobile sand (D50 = 240 μm) to changes in flow depth and velocity. The experimental results illustrate that water depth and flow velocity have separate effects on the processes that control dune adaptation, and that the crests and troughs of dunes do not respond simultaneously to changes in flow. Trough scour increases with flow velocity, but superelevation of the dune crests appear to show only a weak relation with flow depth. Flattening-out of dune crests is related to decreasing depth and increasing flow velocity. Bedform superimposition, a key feature of bedform kinematics, was associated with increased flow depth, but was also systematically associated with local increases in the crest-to-crest distance following the dissipation of an upstream dune. Thus, local flow-form interactions have a significant effect on the manner in which sediment is redistributed over and among dunes. The splitting of dunes decreased in the downstream direction along the length of the flume, illustrating that the dunes continue to interact even after dune height has stabilised. Other processes, such as differential migration and dune merging, are ubiquitous during all flow conditions. These varied responses support the notion that the processes of dune adaptation vary over time and in space. Analysis of dune deformation through examination of the residuals of cross-correlations between successive dune profiles illustrates that local sources and sinks of sediment exist within mobile dune fields. These findings highlight that dune adaptation to changes in flow is a dynamic response involving multiple interconnected dunes. The redistribution of sediment that is required for dunes to change shape and adapt to new conditions is expected to be an important cause of variability in sediment transport. These detailed analyses and findings provide a foundation for further study of dune dynamics in different environments on Earth as well as other planetary bodies

    Extremes in dune preservation: Controls on the completeness of fluvial deposits

    Get PDF
    Understanding sedimentary preservation underpins our ability to interpret the ancient sedimentary record and reconstruct paleoenvironments and paleoclimates. Dune sets are ubiquitous in preserved river deposits and are typically interpreted based on a model that describes the recurrence of erosion in a vertical sequence, but without considering spatial variability. However, spatial variability in flow and sediment transport will change the recurrence of erosion, and therefore dune preservation. In order to better understand the limits of these interpretations and outline the causes of potential variability in preservation potential, this paper reviews existing work and presents new observations of an extreme end-member of dune preservation: ‘form-sets’, formed by dunes in which both stoss- and lee-slopes are preserved intact. These form-sets do not conform to models that are based on the recurrence of erosion, since erosion does not recur in their case, and can therefore be used to evaluate the assumptions that underpin sedimentary preservation. New Ground Penetrating Radar data from the Río Paraná, Argentina, show dune fields that are buried intact within larger scale barforms. These trains of form-sets are up to 300 m in length, are restricted to unit-bar troughs in the upper 5 m of the channel deposits, occur in > 5% of the mid-channel bar deposits, show reactivation surfaces, occur in multiple levels, and match the size of average-flow dunes. A review of published accounts of form-sets highlights a diversity of processes that can be envisaged for their formation: i) abandonment after extreme floods, ii) slow burial of abandoned dune forms by cohesive clay in sheltered bar troughs and meander-neck cut-offs, iii) fast burial by mass-movement processes, and iv) climbing of dune sets due to local dominance of deposition over dune migration. Analysis of these new and published accounts of form-sets and their burial processes highlights that form-sets need not be indicative of extreme floods. Instead, form-sets are closely associated with surrounding geomorphology such as river banks, meander-neck cut-offs, and bars because this larger-scale context controls the local sediment budget and the nature of recurrence of erosion. Locally enhanced preservation by the ‘extreme’ dominance of deposition is further promoted by finer grain sizes and prolonged changes in flow stage. Such conditions are characteristic, although not exclusive, of large lowland rivers such as the Río Paraná. The spatial control on dune preservation is critical: although at-a-point models adequately describe near-horizontal sets of freely migrating dunes in uniform flows, they are unsuitable for inclined dune co-sets and other cases where multiple scales of bedforms interact. Spatial and temporal variations in flow and sediment transport between the thalweg and different positions on larger bar-forms can change the preservation potential of dunes within river channels. Therefore, dune set thickness distributions are likely grouped in larger-scale units that reflect both formative dune geometries and bar-scale variations in preservation potential. The multi-scale dynamics of preservation highlighted herein also provides a useful comparison for other sedimentary systems
    corecore