647 research outputs found

    A DSMC investigation of gas flows in micro-channels with bends

    Get PDF
    Pressure-driven, implicit boundary conditions are implemented in an open source direct simulation Monte Carlo (DSMC) solver, and benchmarked against simple micro-channel flow cases found in the literature. DSMC simulations are then carried out of gas flows for varying degrees of rarefaction along micro-channels with both one and two ninety-degree bends. The results are compared to those from the equivalent straight micro-channel geometry. Away from the immediate bend regions, the pressure and Mach number profiles do not differ greatly from those in straight channels, indicating that there are no significant losses introduced when a bend is added to a micro-channel geometry. It is found that the inclusion of a bend in a micro-channel can increase the amount of mass that a channel can carry, and that adding a second bend produces a greater mass flux enhancement. This increase happens within a small range of Knudsen number (0.02 Knin 0.08). Velocity slip and shear stress profiles at the channel walls are presented for the Knudsen showing the largest mass flux enhancement

    Flipping the language learning curve word by word

    Get PDF
    Changing habits to incorporate dedicated learning time into daily life is difficult. This thesis details passive learning through a system that takes advantage of microtasks that occur within the content users are already consuming. I present FlipWord, an application that automatically inserts second language vocabulary in line with a user’s native language on every website visited. These words are generally in-context, emphasized through spaced repetition, and reviewable through micro-challenges. User retention over four months has been particularly high, with positive user feedback and reviews

    Systems of Access: A Multidisciplinary Strategy for Assessing the Social Dimensions of Sustainability

    Get PDF
    The concept of access to natural resources has been a specific concern of economists and ecologists and is a distinct component in recent models of social sustainability. Using a series of conceptual and empirical examples, this article extends the notion of access broadly to social institutions and sociocultural norms. We argue that access may be usefully construed as an analytic tool that has direct applicability to many sustainability issues as it allows for cross-disciplinary and public engagement. Here the concept of access, linked to Amartya Sen’s theory of capabilities, also makes visible the multi-scaled and interconnected social processes that influence the material world and from which certain individuals and communities are excluded. This article examines access as a set of culturally appropriate and equitable engagements that promote social sustainability with a series of four examples: access to actions necessary to reclaim a polluted river; access to restorative natural environments; access to information and research findings; and access to decision-making processes. Insights from these examples are integrated within the wider discourse on sustainability

    A kinetic model of the Boltzmann equation for non-vibrating polyatomic gases

    Get PDF
    A kinetic model of the Boltzmann equation for non-vibrating polyatomic gases is proposed, based on the Rykov model for diatomic gases. We adopt two velocity distribution functions (VDFs) to describe the system state; inelastic collisions are the same as in the Rykov model, but elastic collisions are modelled by the Boltzmann collision operator (BCO) for monatomic gases, so that the overall kinetic model equation reduces to the Boltzmann equation for monatomic gases in the limit of no translational–rotational energy exchange. The free parameters in the model are determined by comparing the transport coefficients, obtained by a Chapman–Enskog expansion, to values from experiment and kinetic theory. The kinetic model equations are solved numerically using the fast spectral method for elastic collision operators and the discrete velocity method for inelastic ones. The numerical results for normal shock waves and planar Fourier/Couette flows are in good agreement with both conventional direct simulation Monte Carlo (DSMC) results and experimental data. Poiseuille and thermal creep flows of polyatomic gases between two parallel plates are also investigated. Finally, we find that the spectra of both spontaneous and coherent Rayleigh–Brillouin scattering (RBS) compare well with DSMC results, and the computational speed of our model is approximately 300 times faster. Compared to the Rykov model, our model greatly improves prediction accuracy, and reveals the significant influence of molecular models. For coherent RBS, we find that the Rykov model could overpredict the bulk viscosity by a factor of two

    CARMA Measurements of the Sunyaev-Zel'dovich Effect in RXJ1347.5-1145

    Get PDF
    We demonstrate the Sunyaev-Zel'dovich (SZ) effect imaging capabilities of the Combined Array for Research in Millimeter-wave Astronomy (CARMA) by presenting an SZ map of the galaxy cluster RXJ1347.5-1145. By combining data from multiple CARMA bands and configurations, we are able to capture the structure of this cluster over a wide range of angular scales, from its bulk properties to its core morphology. We find that roughly 9% of this cluster's thermal energy is associated with sub-arcminute-scale structure imparted by a merger, illustrating the value of high-resolution SZ measurements for pursuing cluster astrophysics and for understanding the scatter in SZ scaling relations. We also find that the cluster's SZ signal is lower in amplitude than suggested by a spherically-symmetric model derived from X-ray data, consistent with compression along the line of sight relative to the plane of the sky. Finally, we discuss the impact of upgrades currently in progress that will further enhance CARMA's power as an SZ imaging instrument.Comment: 8 pages, 6 figure

    Cold collapse and the core catastrophe

    Full text link
    We show that a universe dominated by cold dark matter fails to reproduce the rotation curves of dark matter dominated galaxies, one of the key problems that it was designed to resolve. We perform numerical simulations of the formation of dark matter halos, each containing \gsim 10^6 particles and resolved to 0.003 times the virial radius, allowing an accurate comparison with rotation curve data. A good fit to both galactic and cluster sized halos can be achieved using the density profile rho(r) \propto [(r/r_s)^1.5(1+(r/r_s)^1.5)]^-1, where r_s is a scale radius. This profile has a steeper asymptotic slope, rho(r) \propto r^-1.5, and a sharper turnover than found by lower resolution studies. The central structure of relaxed halos that form within a hierarchical universe has a remarkably small scatter (unrelaxed halos would not host disks). We compare the results with a sample of dark matter dominated, low surface brightness (LSB) galaxies with circular velocities in the range 100-300 km/s. The rotation curves of disks within cold dark matter halos rise too steeply to match these data which require a constant mass density in the central regions. The same conclusion is reached if we compare the scale free shape of observed rotation curves with the simulation data. It is important to confirm these results using stellar rather than HI rotation curves for LSB galaxies. We test the effects of introducing a cut-off in the power spectrum that may occur in a universe dominated by warm dark matter. In this case halos form by a monolithic collapse but the final density profile hardly changes, demonstrating that the merger history does not play a role in determining the halo structure.Comment: Latex 13 pages, 4 figures. Submitted to MNRAS. High resolution colour version of figure 4 and other N-body images here: http://star-www.dur.ac.uk:80/~moore/images

    Inserting “OFF-to-ON” BODIPY Tags into Cytokines: A Fluorogenic Interleukin IL-33 for Real-Time Imaging of Immune Cells

    Get PDF
    The essential functions that cytokine/immune cell interactions play in tissue homeostasis and during disease have prompted the molecular design of targeted fluorophores to monitor their activity in real time. Whereas activatable probes for imaging immune-related enzymes are common, many immunological functions are mediated by binding events between cytokines and their cognate receptors that are hard to monitor by live-cell imaging. A prime example is interleukin-33 (IL-33), a key cytokine in innate and adaptive immunity, whose interaction with the ST2 cell-surface receptor results in downstream signaling and activation of NF-κB and AP-1 pathways. In the present work, we have designed a chemical platform to site-specifically introduce OFF-to-ON BODIPY fluorophores into full cytokine proteins and generate the first native-like fluorescent analogues of IL-33. Among different incorporation strategies, chemical aminoacylation followed by bioorthogonal derivatization led to the best labeling results.Importantly, the BODIPY-labeled IL-33 derivatives -unlike IL-33-GFP constructs- exhibited ST2-specific binding and downstream bioactivity profiles comparable to those of the wild-type interleukin. Real-time fluorescence microscopy assays under no wash conditions confirmed the internalization of IL-33 through ST2 receptors and its intracellular trafficking through the endosomal pathway. We envision that the modularity and versatility of our BODIPY labeling platform will facilitate the synthesis of minimally tagged fluorogenic cytokines as the next generation of imaging reagents for real-time visualization of signaling events in live immune cells

    Open source Direct Simulation Monte Carlo (DSMC) chemistry modelling for hypersonic flows

    Get PDF
    An open source implementation of chemistry modelling for the direct simulation Monte Carlo (DSMC) method is presented. Following the recent work of Bird [1] an approach known as the quantum kinetic (Q-K) method has been adopted to describe chemical reactions in a 5-species air model using DSMC procedures based on microscopic gas information. The Q-K technique has been implemented within the framework of the dsmcFoam code, a derivative of the open source CFD code OpenFOAM. Results for vibrational relaxation, dissociation and exchange reaction rates for an adiabatic bath demonstrate the success of the Q-K model when compared with analytical solutions for both inert and reacting conditions. A comparison is also made between the Q-K and total collision energy (TCE) chemistry approaches for a hypersonic flow benchmark case

    Detection of the Power Spectrum of Cosmic Microwave Background Lensing by the Atacama Cosmology Telescope

    Full text link
    We report the first detection of the gravitational lensing of the cosmic microwave background through a measurement of the four-point correlation function in the temperature maps made by the Atacama Cosmology Telescope. We verify our detection by calculating the levels of potential contaminants and performing a number of null tests. The resulting convergence power spectrum at 2-degree angular scales measures the amplitude of matter density fluctuations on comoving length scales of around 100 Mpc at redshifts around 0.5 to 3. The measured amplitude of the signal agrees with Lambda Cold Dark Matter cosmology predictions. Since the amplitude of the convergence power spectrum scales as the square of the amplitude of the density fluctuations, the 4-sigma detection of the lensing signal measures the amplitude of density fluctuations to 12%.Comment: 4 pages, 4 figures, replaced title and author list with version accepted by Physical Review Letters. Likelihood code can be downloaded from http://bccp.lbl.gov/~sudeep/ACTLensLike.htm
    corecore