7,433 research outputs found

    Stable higher order finite-difference schemes for stellar pulsation calculations

    Full text link
    Context: Calculating stellar pulsations requires a sufficient accuracy to match the quality of the observations. Many current pulsation codes apply a second order finite-difference scheme, combined with Richardson extrapolation to reach fourth order accuracy on eigenfunctions. Although this is a simple and robust approach, a number of drawbacks exist thus making fourth order schemes desirable. A robust and simple finite-difference scheme, which can easily be implemented in either 1D or 2D stellar pulsation codes is therefore required. Aims: One of the difficulties in setting up higher order finite-difference schemes for stellar pulsations is the so-called mesh-drift instability. Current ways of dealing with this defect include introducing artificial viscosity or applying a staggered grids approach. However these remedies are not well-suited to eigenvalue problems, especially those involving non-dissipative systems, because they unduly change the spectrum of the operator, introduce supplementary free parameters, or lead to complications when applying boundary conditions. Methods: We propose here a new method, inspired from the staggered grids strategy, which removes this instability while bypassing the above difficulties. Furthermore, this approach lends itself to superconvergence, a process in which the accuracy of the finite differences is boosted by one order. Results: This new approach is shown to be accurate, flexible with respect to the underlying grid, and able to remove mesh-drift.Comment: 15 pages, 11 figures, accepted for publication in A&

    Inequalities on stellar rotational splittings derived from assumptions on the rotation profile

    Full text link
    Context: A number of pulsating stars with rotational splittings have been observed thanks to the CoRoT and Kepler missions. This is particularly true of evolved (sub-giant and giant) stars, and has led various groups to investigate their rotation profiles via different methods. Aims: We would like to set up some criteria which will help us to know whether a decreasing rotation profile, or one which satisfies Rayleigh's stability criterion, is compatible with a set of observed rotational splittings for a given reference model. Methods: We derive inequalities on the rotational splittings using a reformulated version of the equation which relates the splittings to the rotation profile and kernels. Results: These inequalities are tested out on some simple examples. The first examples show how they are able to reveal when a rotation profile is increasing somewhere or inconsistent with Rayleigh's criterion in a main sequence star, depending on the profile and the \ell values of the splittings. The next example illustrates how a slight mismatch between an observed evolved star and a reference model can lead to erroneous conclusions about the rotation profile. We also show how frequency differences between the star and the model, which should normally reveal this mismatch, can be masked by frequency corrections for near-surface effects.Comment: 15 pages, 19 figures, accepted for publication in A&

    Regular Oscillation Sub-spectrum of Rapidly Rotating Stars

    Full text link
    We present an asymptotic theory that describes regular frequency spacings of pressure modes in rapidly rotating stars. We use an asymptotic method based on an approximate solution of the pressure wave equation constructed from a stable periodic solution of the ray limit. The approximate solution has a Gaussian envelope around the stable ray, and its quantization yields the frequency spectrum. We construct semi-analytical formulas for regular frequency spacings and mode spatial distributions of a subclass of pressure modes in rapidly rotating stars. The results of these formulas are in good agreement with numerical data for oscillations in polytropic stellar models. The regular frequency spacings depend explicitly on internal properties of the star, and their computation for different rotation rates gives new insights on the evolution of mode frequencies with rotation.Comment: 14 pages, 10 figure

    Pressure limiting propellant actuating system

    Get PDF
    A pressure limiting propellant activating system for simultaneously limiting the output force while maintaining a constant output pressure from the combustion chamber is described. The propellant actuated system includes an outer barrel, outer housing and a combustion chamber. A main piston is movable in the barrel housing when gas pressure is developed in the combustion chamber. A relief piston is concentrically mounted and fixedly movable with the main piston when gas pressure is exerted from the combustion. A relief piston has a force-activated separation mechanism for limiting the output force while simultaneously maintaining constant output pressure on the main piston from the combustion chamber

    Gravity modes in rapidly rotating stars. Limits of perturbative methods

    Full text link
    CoRoT and Kepler missions are now providing high-quality asteroseismic data for a large number of stars. Among intermediate-mass and massive stars, fast rotators are common objects. Taking the rotation effects into account is needed to correctly understand, identify, and interpret the observed oscillation frequencies of these stars. A classical approach is to consider the rotation as a perturbation. In this paper, we focus on gravity modes, such as those occurring in gamma Doradus, slowly pulsating B (SPB), or Be stars. We aim to define the suitability of perturbative methods. With the two-dimensional oscillation program (TOP), we performed complete computations of gravity modes -including the Coriolis force, the centrifugal distortion, and compressible effects- in 2-D distorted polytropic models of stars. We started with the modes l=1, n=1-14, and l=2-3, n=1-5,16-20 of a nonrotating star, and followed these modes by increasing the rotation rate up to 70% of the break-up rotation rate. We then derived perturbative coefficients and determined the domains of validity of the perturbative methods. Second-order perturbative methods are suited to computing low-order, low-degree mode frequencies up to rotation speeds ~100 km/s for typical gamma Dor stars or ~150 km/s for B stars. The domains of validity can be extended by a few tens of km/s thanks to the third-order terms. For higher order modes, the domains of validity are noticeably reduced. Moreover, perturbative methods are inefficient for modes with frequencies lower than the Coriolis frequency 2Omega. We interpret this failure as a consequence of a modification in the shape of the resonant cavity that is not taken into account in the perturbative approach.Comment: 8 pages, 6 figures, Astronomy & Astrophysics (in press

    Using seismic inversions to obtain an internal mixing processes indicator for main-sequence solar-like stars

    Full text link
    Determining accurate and precise stellar ages is a major problem in astrophysics. These determinations are either obtained through empirical relations or model-dependent approaches. Currently, seismic modelling is one of the best ways of providing accurate ages. However, current methods are affected by simplifying assumptions concerning mixing processes. In this context, providing new structural indicators which are less model-dependent and more sensitive to such processes is crucial. We build a new indicator for core conditions on the main sequence, which should be more sensitive to structural differences and applicable to older stars than the indicator t presented in a previous paper. We also wish to analyse the importance of the number and type of modes for the inversion, as well as the impact of various constraints and levels of accuracy in the forward modelling process that is used to obtain reference models for the inversion. First, we present a method to obtain new structural kernels and use them to build an indicator of central conditions in stars and test it for various effects including atomic diffusion, various initial helium abundances and metallicities, following the seismic inversion method presented in our previous paper. We then study its accuracy for 7 different pulsation spectra including those of 16CygA and 16CygB and analyse its dependence on the reference model by using different constraints and levels of accuracy for its selection We observe that the inversion of the new indicator using the SOLA method provides a good diagnostic for additional mixing processes in central regions of stars. Its sensitivity allows us to test for diffusive processes and chemical composition mismatch. We also observe that octupole modes can improve the accuracy of the results, as well as modes of low radial order.Comment: Accepted for publication in Astronomy and Astrophysic
    corecore